These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 9372575)

  • 21. Method for MRI-guided conformal thermal therapy of prostate with planar transurethral ultrasound heating applicators.
    Chopra R; Burtnyk M; Haider MA; Bronskill MJ
    Phys Med Biol; 2005 Nov; 50(21):4957-75. PubMed ID: 16237234
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterising ultrasonic physiotherapy systems by performance and safety now internationally agreed.
    Hekkenberg RT
    Ultrasonics; 1998 Feb; 36(1-5):713-20. PubMed ID: 9651602
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A buoyancy method for the measurement of total ultrasound power generated by HIFU transducers.
    Shaw A
    Ultrasound Med Biol; 2008 Aug; 34(8):1327-42. PubMed ID: 18471952
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quality assurance tools for therapeutic ultrasound.
    Schätzle U; Reuner T; Jenne J; Heilingbrunner A
    Ultrasonics; 1998 Feb; 36(1-5):679-82. PubMed ID: 9651596
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrasonic temperature imaging for guiding focused ultrasound surgery: effect of angle between imaging beam and therapy beam.
    Miller NR; Bograchev KM; Bamber JC
    Ultrasound Med Biol; 2005 Mar; 31(3):401-13. PubMed ID: 15749564
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of nonlinear propagation, cavitation, and boiling in lesion formation by high intensity focused ultrasound in a gel phantom.
    Khokhlova VA; Bailey MR; Reed JA; Cunitz BW; Kaczkowski PJ; Crum LA
    J Acoust Soc Am; 2006 Mar; 119(3):1834-48. PubMed ID: 16583923
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 64-element intraluminal ultrasound cylindrical phased array for transesophageal thermal ablation under fast MR temperature mapping: an ex vivo study.
    Melodelima D; Salomir R; Mougenot C; Moonen C; Cathignol D
    Med Phys; 2006 Aug; 33(8):2926-34. PubMed ID: 16964871
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-Cost Thermochromic Quality Assurance Phantom for Therapeutic Ultrasound Devices: A Proof of Concept.
    Eames M; Larrabee Z; Hananel A; Padilla F; Aubry JF
    Ultrasound Med Biol; 2023 Jan; 49(1):269-277. PubMed ID: 36441031
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative estimation of ultrasound beam intensities using infrared thermography-Experimental validation.
    Giridhar D; Robinson RA; Liu Y; Sliwa J; Zderic V; Myers MR
    J Acoust Soc Am; 2012 Jun; 131(6):4283-91. PubMed ID: 22712903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Theoretical study for safe and efficient energy transfer to deeply implanted devices using ultrasound.
    Cotté B; Lafon C; Dehollain C; Chapelon JY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Aug; 59(8):1674-85. PubMed ID: 22899115
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of a novel solid-state method for determining the acoustic power generated by physiotherapy ultrasound transducers.
    Zeqiri B; Barrie J
    Ultrasound Med Biol; 2008 Sep; 34(9):1513-27. PubMed ID: 18440695
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Localization of focused-ultrasound beams in a tissue phantom, using remote thermocouple arrays.
    Hariharan P; Dibaji SA; Banerjee RK; Nagaraja S; Myers MR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Dec; 61(12):2019-31. PubMed ID: 25474777
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acoustic power calibrations of cylindrical intracavitary ultrasound hyperthermia applicators.
    Hynynen K
    Med Phys; 1993; 20(1):129-34. PubMed ID: 8455491
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of back reflections on the acoustic power delivered by physiotherapy ultrasound machines.
    McBride KA; Pye SD
    Ultrasound Med Biol; 2009 Oct; 35(10):1672-8. PubMed ID: 19679389
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal contribution of compact bone to intervening tissue-like media exposed to planar ultrasound.
    Moros EG; Novak P; Straube WL; Kolluri P; Yablonskiy DA; Myerson RJ
    Phys Med Biol; 2004 Mar; 49(6):869-86. PubMed ID: 15104313
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Four-dimensional optoacoustic monitoring of tissue heating with medium intensity focused ultrasound.
    Landa FJO; Penacoba SR; de Espinosa FM; Razansky D; Deán-Ben XL
    Ultrasonics; 2019 Apr; 94():117-123. PubMed ID: 30580815
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conformal thermal therapy using planar ultrasound transducers and adaptive closed-loop MR temperature control: demonstration in gel phantoms and ex vivo tissues.
    Tang K; Choy V; Chopra R; Bronskill MJ
    Phys Med Biol; 2007 May; 52(10):2905-19. PubMed ID: 17473359
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Calibration and measurement issues for therapeutic ultrasound.
    Shaw A; Hodnett M
    Ultrasonics; 2008 Aug; 48(4):234-52. PubMed ID: 18234261
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental Verification of Modeled Thermal Distribution Produced by a Piston Source in Physiotherapy Ultrasound.
    Gutierrez MI; Lopez-Haro SA; Vera A; Leija L
    Biomed Res Int; 2016; 2016():5484735. PubMed ID: 27999801
    [No Abstract]   [Full Text] [Related]  

  • 40. A comparison of ultrasonic beams for thermal treatment of ocular tumors.
    Lizzi FL; Deng CX; Lee P; Rosado A; Silverman RH; Coleman DJ
    Eur J Ultrasound; 1999 Mar; 9(1):71-8. PubMed ID: 10099168
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.