These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 9372617)
1. Fluorescence energy transfer-sensitized photobleaching of a fluorescent label as a tool to study donor-acceptor distance distributions and dynamics in protein assemblies: studies of a complex of biotinylated IgM with streptavidin and aggregates of concanavalin A. Mekler VM; Averbakh AZ; Sudarikov AB; Kharitonova OV J Photochem Photobiol B; 1997 Oct; 40(3):278-87. PubMed ID: 9372617 [TBL] [Abstract][Full Text] [Related]
2. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data. Dietrich A; Buschmann V; Müller C; Sauer M J Biotechnol; 2002 Jan; 82(3):211-31. PubMed ID: 11999691 [TBL] [Abstract][Full Text] [Related]
3. Post-column reaction detection based on fluorescence energy transfer in the far red spectral region. Shahdeo K; Karnes HT J Pharm Biomed Anal; 1999 Nov; 21(2):361-70. PubMed ID: 10703992 [TBL] [Abstract][Full Text] [Related]
4. Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. Clapp AR; Medintz IL; Mauro JM; Fisher BR; Bawendi MG; Mattoussi H J Am Chem Soc; 2004 Jan; 126(1):301-10. PubMed ID: 14709096 [TBL] [Abstract][Full Text] [Related]
5. Biotin induced fluorescence enhancement in resonance energy transfer and application for bioassay. Hu S; Yang H; Cai R; Liu Z; Yang X Talanta; 2009 Dec; 80(2):454-8. PubMed ID: 19836503 [TBL] [Abstract][Full Text] [Related]
6. Photobleaching Comparison of R-Phycoerythrin-Streptavidin and Streptavidin-Alexa Fluor 568 in a Breast Cancer Cell Line. Ostad SN; Babaei S; Bayat AA; Mahmoudian J Monoclon Antib Immunodiagn Immunother; 2019 Feb; 38(1):25-29. PubMed ID: 30759058 [TBL] [Abstract][Full Text] [Related]
7. Photophysical evaluation of a new functional terbium complex in FRET-based time-resolved homogenous fluoroassays. Cywiński PJ; Nchimi Nono K; Charbonnière LJ; Hammann T; Löhmannsröben HG Phys Chem Chem Phys; 2014 Apr; 16(13):6060-7. PubMed ID: 24556813 [TBL] [Abstract][Full Text] [Related]
8. Analysis of photobleaching in single-molecule multicolor excitation and Förster resonance energy transfer measurements. Eggeling C; Widengren J; Brand L; Schaffer J; Felekyan S; Seidel CA J Phys Chem A; 2006 Mar; 110(9):2979-95. PubMed ID: 16509620 [TBL] [Abstract][Full Text] [Related]
9. FRET or no FRET: a quantitative comparison. Berney C; Danuser G Biophys J; 2003 Jun; 84(6):3992-4010. PubMed ID: 12770904 [TBL] [Abstract][Full Text] [Related]
10. Development of a time-resolved fluorescence resonance energy transfer assay (cell TR-FRET) for protein detection on intact cells. Lundin K; Blomberg K; Nordström T; Lindqvist C Anal Biochem; 2001 Dec; 299(1):92-7. PubMed ID: 11726189 [TBL] [Abstract][Full Text] [Related]
11. Anomalous surplus energy transfer observed with multiple FRET acceptors. Koushik SV; Blank PS; Vogel SS PLoS One; 2009 Nov; 4(11):e8031. PubMed ID: 19946626 [TBL] [Abstract][Full Text] [Related]
12. Single-molecule quantum-dot fluorescence resonance energy transfer. Hohng S; Ha T Chemphyschem; 2005 May; 6(5):956-60. PubMed ID: 15884082 [TBL] [Abstract][Full Text] [Related]
13. On the origin of broadening of single-molecule FRET efficiency distributions beyond shot noise limits. Kalinin S; Sisamakis E; Magennis SW; Felekyan S; Seidel CA J Phys Chem B; 2010 May; 114(18):6197-206. PubMed ID: 20397670 [TBL] [Abstract][Full Text] [Related]
14. Solution-phase single quantum dot fluorescence resonance energy transfer. Pons T; Medintz IL; Wang X; English DS; Mattoussi H J Am Chem Soc; 2006 Nov; 128(47):15324-31. PubMed ID: 17117885 [TBL] [Abstract][Full Text] [Related]
16. Monitoring a coordinated exchange process in a four-component biological interaction system: development of a time-resolved terbium-based one-donor/three-acceptor multicolor FRET system. Kim SH; Gunther JR; Katzenellenbogen JA J Am Chem Soc; 2010 Apr; 132(13):4685-92. PubMed ID: 20230029 [TBL] [Abstract][Full Text] [Related]
17. Detection of FRET efficiency in imaging systems by photo-bleaching acceptors. Deng C; Li J; Ma W Talanta; 2010 Jul; 82(2):771-4. PubMed ID: 20602968 [TBL] [Abstract][Full Text] [Related]
18. Homogeneous non-competitive bioaffinity assay based on fluorescence resonance energy transfer. Kokko T; Kokko L; Soukka T; Lövgren T Anal Chim Acta; 2007 Feb; 585(1):120-5. PubMed ID: 17386655 [TBL] [Abstract][Full Text] [Related]
19. NIR fluorescent biotinylated cyanine dye: optical properties and combination with quantum dots as a potential sensing device. Menéndez GO; Pichel ME; Spagnuolo CC; Jares-Erijman EA Photochem Photobiol Sci; 2013 Feb; 12(2):236-40. PubMed ID: 22972309 [TBL] [Abstract][Full Text] [Related]
20. Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching. Van Munster EB; Kremers GJ; Adjobo-Hermans MJ; Gadella TW J Microsc; 2005 Jun; 218(Pt 3):253-62. PubMed ID: 15958019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]