These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 9372924)
21. Two mammalian homologs of yeast Rad23, HR23A and HR23B, as multifunctional proteins. Yokoi M; Hanaoka F Gene; 2017 Jan; 597():1-9. PubMed ID: 27771451 [TBL] [Abstract][Full Text] [Related]
22. The UV-damaged DNA binding protein mediates efficient targeting of the nucleotide excision repair complex to UV-induced photo lesions. Moser J; Volker M; Kool H; Alekseev S; Vrieling H; Yasui A; van Zeeland AA; Mullenders LH DNA Repair (Amst); 2005 May; 4(5):571-82. PubMed ID: 15811629 [TBL] [Abstract][Full Text] [Related]
23. Human XPC-hHR23B interacts with XPA-RPA in the recognition of triplex-directed psoralen DNA interstrand crosslinks. Thoma BS; Wakasugi M; Christensen J; Reddy MC; Vasquez KM Nucleic Acids Res; 2005; 33(9):2993-3001. PubMed ID: 15914671 [TBL] [Abstract][Full Text] [Related]
24. Analysis of gene- and strand-specific repair in the moderately UV-sensitive Saccharomyces cerevisiae rad23 mutant. Verhage RA; Zeeman AM; Lombaerts M; van de Putte P; Brouwer J Mutat Res; 1996 Feb; 362(2):155-65. PubMed ID: 8596534 [TBL] [Abstract][Full Text] [Related]
25. In vivo destabilization and functional defects of the xeroderma pigmentosum C protein caused by a pathogenic missense mutation. Yasuda G; Nishi R; Watanabe E; Mori T; Iwai S; Orioli D; Stefanini M; Hanaoka F; Sugasawa K Mol Cell Biol; 2007 Oct; 27(19):6606-14. PubMed ID: 17682058 [TBL] [Abstract][Full Text] [Related]
26. A novel regulation mechanism of DNA repair by damage-induced and RAD23-dependent stabilization of xeroderma pigmentosum group C protein. Ng JM; Vermeulen W; van der Horst GT; Bergink S; Sugasawa K; Vrieling H; Hoeijmakers JH Genes Dev; 2003 Jul; 17(13):1630-45. PubMed ID: 12815074 [TBL] [Abstract][Full Text] [Related]
27. Involvement of rhp23, a Schizosaccharomyces pombe homolog of the human HHR23A and Saccharomyces cerevisiae RAD23 nucleotide excision repair genes, in cell cycle control and protein ubiquitination. Elder RT; Song XQ; Chen M; Hopkins KM; Lieberman HB; Zhao Y Nucleic Acids Res; 2002 Jan; 30(2):581-91. PubMed ID: 11788722 [TBL] [Abstract][Full Text] [Related]
28. Ataxin-3, the MJD1 gene product, interacts with the two human homologs of yeast DNA repair protein RAD23, HHR23A and HHR23B. Wang G; Sawai N; Kotliarova S; Kanazawa I; Nukina N Hum Mol Genet; 2000 Jul; 9(12):1795-803. PubMed ID: 10915768 [TBL] [Abstract][Full Text] [Related]
29. Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. Evans E; Moggs JG; Hwang JR; Egly JM; Wood RD EMBO J; 1997 Nov; 16(21):6559-73. PubMed ID: 9351836 [TBL] [Abstract][Full Text] [Related]
31. Flexibility and plasticity of human centrin 2 binding to the xeroderma pigmentosum group C protein (XPC) from nuclear excision repair. Yang A; Miron S; Mouawad L; Duchambon P; Blouquit Y; Craescu CT Biochemistry; 2006 Mar; 45(11):3653-63. PubMed ID: 16533048 [TBL] [Abstract][Full Text] [Related]
32. Xeroderma pigmentosum and molecular cloning of DNA repair genes. Boulikas T Anticancer Res; 1996; 16(2):693-708. PubMed ID: 8687116 [TBL] [Abstract][Full Text] [Related]
33. The carboxy-terminal domain of the XPC protein plays a crucial role in nucleotide excision repair through interactions with transcription factor IIH. Uchida A; Sugasawa K; Masutani C; Dohmae N; Araki M; Yokoi M; Ohkuma Y; Hanaoka F DNA Repair (Amst); 2002 Jun; 1(6):449-61. PubMed ID: 12509233 [TBL] [Abstract][Full Text] [Related]
34. Subcellular distribution of RAD23B controls XPC degradation and DNA damage repair in response to chemotherapy drugs. You X; Guo W; Wang L; Hou Y; Zhang H; Pan Y; Han R; Huang M; Liao L; Chen Y Cell Signal; 2017 Aug; 36():108-116. PubMed ID: 28473198 [TBL] [Abstract][Full Text] [Related]
35. Critical DNA damage recognition functions of XPC-hHR23B and XPA-RPA in nucleotide excision repair. Thoma BS; Vasquez KM Mol Carcinog; 2003 Sep; 38(1):1-13. PubMed ID: 12949838 [TBL] [Abstract][Full Text] [Related]
36. Recognition of DNA damage by XPC coincides with disruption of the XPC-RAD23 complex. Bergink S; Toussaint W; Luijsterburg MS; Dinant C; Alekseev S; Hoeijmakers JH; Dantuma NP; Houtsmuller AB; Vermeulen W J Cell Biol; 2012 Mar; 196(6):681-8. PubMed ID: 22431748 [TBL] [Abstract][Full Text] [Related]
37. Genetic diversity and functional effect of common polymorphisms in genes involved in the first heterodimeric complex of the Nucleotide Excision Repair pathway. Hamdi Y; Jerbi M; Romdhane L; Ben Rekaya M; El Benna H; Chouchane L; Boubaker MS; Abdelhak S; Yacoub-Youssef H DNA Repair (Amst); 2020 Feb; 86():102770. PubMed ID: 31865061 [TBL] [Abstract][Full Text] [Related]
38. Biochemical analysis of the damage recognition process in nucleotide excision repair. You JS; Wang M; Lee SH J Biol Chem; 2003 Feb; 278(9):7476-85. PubMed ID: 12486030 [TBL] [Abstract][Full Text] [Related]
39. E2F1 interactions with hHR23A inhibit its degradation and promote DNA repair. Singh RK; Dagnino L Oncotarget; 2016 May; 7(18):26275-92. PubMed ID: 27028861 [TBL] [Abstract][Full Text] [Related]
40. The ubiquitin receptor Rad23: at the crossroads of nucleotide excision repair and proteasomal degradation. Dantuma NP; Heinen C; Hoogstraten D DNA Repair (Amst); 2009 Apr; 8(4):449-60. PubMed ID: 19223247 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]