These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 9373010)

  • 1. Development of commissural neurons in the wallaby (Macropus eugenii).
    Shang F; Ashwell KW; Marotte LR; Waite PM
    J Comp Neurol; 1997 Nov; 387(4):507-23. PubMed ID: 9373010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of the laminar distribution of thalamocortical axons and corticothalamic cell bodies in the visual cortex of the wallaby.
    Sheng XM; Marotte LR; Mark RF
    J Comp Neurol; 1991 May; 307(1):17-38. PubMed ID: 1713226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anterior commissure of the wallaby (Macropus eugenii): adult morphology and development.
    Ashwell KW; Marotte LR; Li L; Waite PM
    J Comp Neurol; 1996 Mar; 366(3):478-94. PubMed ID: 8907360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The first thalamocortical synapses are made in the cortical plate in the developing visual cortex of the wallaby (Macropus eugenii).
    Pearce AR; Marotte LR
    J Comp Neurol; 2003 Jun; 461(2):205-16. PubMed ID: 12724838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of the visual cortex in a wallaby--phylogenetic implications.
    Harman AM; Eastough NJ; Beazley LD
    Brain Behav Evol; 1995; 45(3):138-52. PubMed ID: 7796093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of geniculocortical projections to visual cortex in rat: evidence early ingrowth and synaptogenesis.
    Kageyama GH; Robertson RT
    J Comp Neurol; 1993 Sep; 335(1):123-48. PubMed ID: 7691903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurogenesis and identification of developing layers in the visual cortex of the wallaby (Macropus eugenii).
    Marotte LR; Sheng X
    J Comp Neurol; 2000 Jan; 416(2):131-42. PubMed ID: 10581461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of connections to and from the visual cortex in the wallaby (Macropus eugenii).
    Sheng XM; Marotte LR; Mark RF
    J Comp Neurol; 1990 Oct; 300(2):196-210. PubMed ID: 2258462
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Timecourse of development of the wallaby trigeminal pathway: III. Thalamocortical and corticothalamic projections.
    Marotte LR; Leamey CA; Waite PM
    J Comp Neurol; 1997 Oct; 387(2):194-214. PubMed ID: 9336223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Timing and origin of the first cortical axons to project through the corpus callosum and the subsequent emergence of callosal projection cells in mouse.
    Ozaki HS; Wahlsten D
    J Comp Neurol; 1998 Oct; 400(2):197-206. PubMed ID: 9766399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development of commissural connections of somatic motor-sensory areas of neocortex in the North American opossum.
    Cabana T; Martin GF
    Anat Embryol (Berl); 1985; 171(1):121-8. PubMed ID: 3838629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyto- and chemoarchitecture of the cortex of the tammar wallaby (Macropus eugenii): areal organization.
    Ashwell KW; Zhang LL; Marotte LR
    Brain Behav Evol; 2005; 66(2):114-36. PubMed ID: 15942162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ontogeny of the projection tracts and commissural fibres in the forebrain of the tammar wallaby (Macropus eugenii): timing in comparison with other mammals.
    Ashwell KW; Waite PM; Marotte L
    Brain Behav Evol; 1996; 47(1):8-22. PubMed ID: 8834781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The organization of the embryonic and early postnatal murine hippocampus. II. Development of entorhinal, commissural, and septal connections studied with the lipophilic tracer DiI.
    Supèr H; Soriano E
    J Comp Neurol; 1994 Jun; 344(1):101-20. PubMed ID: 8063952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of transitory corpus callosum axons projecting to developing cat visual cortex revealed by DiI.
    Elberger AJ
    J Comp Neurol; 1993 Jul; 333(3):326-42. PubMed ID: 8349847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GAP-43 Immunoreactivity in the brain of the developing and adult wallaby ( Macropus eugenii).
    Hassiotis M; Ashwell KW; Marotte LR; Lensing-Höhn S; Mai JK
    Anat Embryol (Berl); 2002 Dec; 206(1-2):97-118. PubMed ID: 12478372
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of transient cortical projections from auditory, somatosensory, and motor cortices to visual areas 17, 18, and 19 in the kitten.
    Dehay C; Kennedy H; Bullier J
    J Comp Neurol; 1988 Jun; 272(1):68-89. PubMed ID: 2454978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigations into the source of binocular input to the nucleus of the optic tract in an Australian marsupial, the wallaby Macropus eugenii.
    Ibbotson MR; Marotte LR; Mark RF
    Exp Brain Res; 2002 Nov; 147(1):80-8. PubMed ID: 12373372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of basal forebrain projections to visual cortex: DiI studies in rat.
    Calarco CA; Robertson RT
    J Comp Neurol; 1995 Apr; 354(4):608-26. PubMed ID: 7608340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of the pathway from the reticular and perireticular nuclei to the thalamus in ferrets: a Dil study.
    Mitrofanis J
    Eur J Neurosci; 1994 Dec; 6(12):1864-82. PubMed ID: 7704297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.