These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 9373393)

  • 1. Deformation of erythrocytes under shear: a small-angle light scattering study.
    Mazeron P; Muller S; el Azouzi H
    Biorheology; 1997; 34(2):99-110. PubMed ID: 9373393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microscopic investigation of erythrocyte deformation dynamics.
    Zhao R; Antaki JF; Naik T; Bachman TN; Kameneva MV; Wu ZJ
    Biorheology; 2006; 43(6):747-65. PubMed ID: 17148857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red blood cell deformability and aggregation behaviour in different animal species.
    Plasenzotti R; Stoiber B; Posch M; Windberger U
    Clin Hemorheol Microcirc; 2004; 31(2):105-11. PubMed ID: 15310945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels.
    Korin N; Bransky A; Dinnar U
    J Biomech; 2007; 40(9):2088-95. PubMed ID: 17188279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A strain-based flow-induced hemolysis prediction model calibrated by in vitro erythrocyte deformation measurements.
    Chen Y; Sharp MK
    Artif Organs; 2011 Feb; 35(2):145-56. PubMed ID: 21091515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Syllectometry: the effect of aggregometer geometry in the assessment of red blood cell shape recovery and aggregation.
    Dobbe JG; Streekstra GJ; Strackee J; Rutten MC; Stijnen JM; Grimbergen CA
    IEEE Trans Biomed Eng; 2003 Jan; 50(1):97-106. PubMed ID: 12617529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain hardening of red blood cells by accumulated cyclic supraphysiological stress.
    Lee SS; Antaki JF; Kameneva MV; Dobbe JG; Hardeman MR; Ahn KH; Lee SJ
    Artif Organs; 2007 Jan; 31(1):80-6. PubMed ID: 17209965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wall shear stress in backward-facing step flow of a red blood cell suspension.
    Gijsen FJ; van de Vosse FN; Janssen JD
    Biorheology; 1998; 35(4-5):263-79. PubMed ID: 10474654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time dependent variation of human blood conductivity as a method for an estimation of RBC aggregation.
    Antonova N; Riha P; Ivanov I
    Clin Hemorheol Microcirc; 2008; 39(1-4):69-78. PubMed ID: 18503112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the effect of microstructural changes of blood on energy dissipation in Couette flow.
    Kaliviotis E; Yianneskis M
    Clin Hemorheol Microcirc; 2008; 39(1-4):235-42. PubMed ID: 18503131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ordering of lipid A-monophosphate clusters in aqueous solutions.
    Faunce CA; Reichelt H; Quitschau P; Paradies HH
    J Chem Phys; 2007 Sep; 127(11):115103. PubMed ID: 17887884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards local rheology of emulsions under Couette flow using Dynamic Light Scattering.
    Salmon JB; Bécu L; Manneville S; Colin A
    Eur Phys J E Soft Matter; 2003 Mar; 10(3):209-21. PubMed ID: 15015103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lamellar-to-onion transition with increasing temperature under shear flow in a nonionic surfactant/water system.
    Kosaka Y; Ito M; Kawabata Y; Kato T
    Langmuir; 2010 Mar; 26(6):3835-42. PubMed ID: 20214389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light scattering by ellipsoids in a physical optics approximation.
    Mazeron P; Muller S
    Appl Opt; 1996 Jul; 35(19):3726-35. PubMed ID: 21102770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyzing shear stress-elongation index curves: comparison of two approaches to simplify data presentation.
    Baskurt OK; Meiselman HJ
    Clin Hemorheol Microcirc; 2004; 31(1):23-30. PubMed ID: 15272150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shear-induced mixing and demixing in aqueous methyl hydroxypropyl cellulose solutions.
    Schmidt J; Burchard W; Richtering W
    Biomacromolecules; 2003; 4(2):453-60. PubMed ID: 12625745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shear small-angle light scattering studies of shear-induced concentration fluctuations and steady state viscoelastic properties.
    Endoh MK; Takenaka M; Inoue T; Watanabe H; Hashimoto T
    J Chem Phys; 2008 Apr; 128(16):164911. PubMed ID: 18447504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model for shear stress-induced deformation of a flow sensor on the surface of vascular endothelial cells.
    Barakat AI
    J Theor Biol; 2001 May; 210(2):221-36. PubMed ID: 11371176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation and application of a microfluidic ektacytometer (RheoScan-D) in measuring erythrocyte deformability.
    Shin S; Hou JX; Suh JS; Singh M
    Clin Hemorheol Microcirc; 2007; 37(4):319-28. PubMed ID: 17942984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation and application of an automated rheoscope for measuring red blood cell deformability distributions in different species.
    Dobbe JG; Hardeman MR; Streekstra GJ; Grimbergen CA
    Biorheology; 2004; 41(2):65-77. PubMed ID: 15090677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.