These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 9373904)

  • 1. Effects of paramagnetic cations on the nonexponential spin-lattice relaxation of rare spin nuclei in solids.
    Alaimo MH; Roberts JE
    Solid State Nucl Magn Reson; 1997 Aug; 8(4):241-50. PubMed ID: 9373904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin diffusion of dipolar energy in NQR.
    Furman GB; Goren SD
    Solid State Nucl Magn Reson; 2000 Jun; 16(3):199-202. PubMed ID: 10868572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using saturation-recovery EPR to measure distances in proteins: applications to photosystem II.
    Hirsh DJ; Beck WF; Innes JB; Brudvig GW
    Biochemistry; 1992 Jan; 31(2):532-41. PubMed ID: 1310040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 31P NMR probes of chemical dynamics: paramagnetic relaxation enhancement of the (1)H and (31)P NMR resonances of methyl phosphite and methylethyl phosphate anions by selected metal complexes.
    Summers JS; Hoogstraten CG; Britt RD; Base K; Shaw BR; Ribeiro AA; Crumbliss AL
    Inorg Chem; 2001 Dec; 40(26):6547-54. PubMed ID: 11735462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron spin relaxation of exchange coupled pairs of transition metal ions in solids. Ti2+-Ti2+ pairs and single Ti2+ ions in SrF2 crystals.
    Hoffmann SK; Lijewski S; Goslar J; Ulanov VA
    J Magn Reson; 2010 Jan; 202(1):14-23. PubMed ID: 19857979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paramagnetic effects on solid state carbon-13 nuclear magnetic resonance spectra of soil organic matter.
    Smernik RJ; Oades JM
    J Environ Qual; 2002; 31(2):414-20. PubMed ID: 11931428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear spin-lattice relaxation mechanisms in kaolinite confirmed by magic-angle spinning.
    Hayashi S; Akiba E
    Solid State Nucl Magn Reson; 1995 Aug; 4(6):331-40. PubMed ID: 8581431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acceleration of carbon-13 spin-lattice relaxation times in amino acids by electrolytes.
    Tian J; Yin Y
    Magn Reson Chem; 2004 Jul; 42(7):641-7. PubMed ID: 15181635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular flexibility demonstrated by paramagnetic enhancements of nuclear relaxation. Application to alamethicin: a voltage-gated peptide channel.
    North CL; Franklin JC; Bryant RG; Cafiso DS
    Biophys J; 1994 Nov; 67(5):1861-6. PubMed ID: 7532020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 31P spin-lattice relaxation in cobalt-containing aluminophosphate molecular sieves.
    Mali G; Kaucic V
    Solid State Nucl Magn Reson; 1998 Oct; 12(4):243-9. PubMed ID: 9800269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 13C spin-lattice relaxation in natural diamond: Zeeman relaxation at 4.7 T and 300 K due to fixed paramagnetic nitrogen defects.
    Terblanche CJ; Reynhardt EC; van Wyk JA
    Solid State Nucl Magn Reson; 2001; 20(1-2):1-22. PubMed ID: 11529416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 31P and 1H NMR studies of the structure of enzyme-bound substrate complexes of lobster muscle arginine kinase: relaxation measurements with Mn(II) and Co(II).
    Jarori GK; Ray BD; Nageswara Rao BD
    Biochemistry; 1989 Nov; 28(24):9343-50. PubMed ID: 2558717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methyl group rotation, 1H spin-lattice relaxation in an organic solid, and the analysis of nonexponential relaxation.
    Beckmann PA; Schneider E
    J Chem Phys; 2012 Feb; 136(5):054508. PubMed ID: 22320752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radical ions with nearly degenerate ground state: correlation between the rate of spin-lattice relaxation and the structure of adiabatic potential energy surface.
    Borovkov VI; Beregovaya IV; Shchegoleva LN; Potashov PA; Bagryansky VA; Molin YN
    J Chem Phys; 2012 Sep; 137(10):104305. PubMed ID: 22979857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin diffusion and nuclear spin-lattice relaxation in irradiated solids: a multiple-pulse NQR study.
    Furman GB; Goren SD; Panich AM; Shames AI
    Solid State Nucl Magn Reson; 1999 Sep; 14(3-4):145-55. PubMed ID: 10499660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The distribution of lipid attached spin probes in bilayers: application to membrane protein topology.
    Vogel A; Scheidt HA; Huster D
    Biophys J; 2003 Sep; 85(3):1691-701. PubMed ID: 12944284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct simulation of magnetic resonance relaxation rates and line shapes from molecular trajectories.
    Rangel DP; Baveye PC; Robinson BH
    J Phys Chem B; 2012 Jun; 116(22):6233-49. PubMed ID: 22540276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 29Si spin-lattice NMR relaxation in microporous silica-based materials with high Mn2+ concentrations.
    Bakhmutov VI; Shpeizer BG; Clearfield A
    Magn Reson Chem; 2006 Nov; 44(11):985-8. PubMed ID: 16958157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On 29Si NMR relaxation as a structural criterion for studying paramagnetic supermicroporous silica-based materials: silica-based materials incorporating Mn2+ ions into the silica matrix of SiO2-Al2O3-MnO.
    Bakhmutov VI; Shpeizer BG; Prosvirin AV; Dunbar KR; Clearfield A
    Solid State Nucl Magn Reson; 2009 Nov; 36(3):129-36. PubMed ID: 19765956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron-electron spin-spin interaction in spin-labeled low-spin methemoglobin.
    Budker V; Du JL; Seiter M; Eaton GR; Eaton SS
    Biophys J; 1995 Jun; 68(6):2531-42. PubMed ID: 7647256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.