BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 9374554)

  • 1. Biochemical characterization of mapmodulin, a protein that binds microtubule-associated proteins.
    Ulitzur N; Rancaño C; Pfeffer SR
    J Biol Chem; 1997 Nov; 272(48):30577-82. PubMed ID: 9374554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapmodulin: a possible modulator of the interaction of microtubule-associated proteins with microtubules.
    Ulitzur N; Humbert M; Pfeffer SR
    Proc Natl Acad Sci U S A; 1997 May; 94(10):5084-9. PubMed ID: 9144194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapmodulin, cytoplasmic dynein, and microtubules enhance the transport of mannose 6-phosphate receptors from endosomes to the trans-golgi network.
    Itin C; Ulitzur N; Mühlbauer B; Pfeffer SR
    Mol Biol Cell; 1999 Jul; 10(7):2191-7. PubMed ID: 10397758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dephosphorylation of microtubule proteins by brain protein phosphatases 1 and 2A, and its effect on microtubule assembly.
    Yamamoto H; Saitoh Y; Fukunaga K; Nishimura H; Miyamoto E
    J Neurochem; 1988 May; 50(5):1614-23. PubMed ID: 2834518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytoplasmic dynein participates in the centrosomal localization of the Golgi complex.
    Corthésy-Theulaz I; Pauloin A; Pfeffer SR
    J Cell Biol; 1992 Sep; 118(6):1333-45. PubMed ID: 1387874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recruitment of CG-NAP to the Golgi apparatus through interaction with dynein-dynactin complex.
    Kim HS; Takahashi M; Matsuo K; Ono Y
    Genes Cells; 2007 Mar; 12(3):421-34. PubMed ID: 17352745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The calcium-binding protein p54/NEFA is a novel luminal resident of medial Golgi cisternae that traffics independently of mannosidase II.
    Morel-Huaux VM; Pypaert M; Wouters S; Tartakoff AM; Jurgan U; Gevaert K; Courtoy PJ
    Eur J Cell Biol; 2002 Feb; 81(2):87-100. PubMed ID: 11893086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of phosphorylation of neuronal microtubule-associated proteins MAP1b and MAP2 by protein phosphatase-2A and -2B in rat brain.
    Gong CX; Wegiel J; Lidsky T; Zuck L; Avila J; Wisniewski HM; Grundke-Iqbal I; Iqbal K
    Brain Res; 2000 Jan; 853(2):299-309. PubMed ID: 10640627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization of Tctex-1, a cytoplasmic dynein light chain, to the Golgi apparatus and evidence for dynein complex heterogeneity.
    Tai AW; Chuang JZ; Sung CH
    J Biol Chem; 1998 Jul; 273(31):19639-49. PubMed ID: 9677391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 14-3-3 protein binds to insulin receptor substrate-1, one of the binding sites of which is in the phosphotyrosine binding domain.
    Ogihara T; Isobe T; Ichimura T; Taoka M; Funaki M; Sakoda H; Onishi Y; Inukai K; Anai M; Fukushima Y; Kikuchi M; Yazaki Y; Oka Y; Asano T
    J Biol Chem; 1997 Oct; 272(40):25267-74. PubMed ID: 9312143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GEC1 interacts with the kappa opioid receptor and enhances expression of the receptor.
    Chen C; Li JG; Chen Y; Huang P; Wang Y; Liu-Chen LY
    J Biol Chem; 2006 Mar; 281(12):7983-93. PubMed ID: 16431922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-specific phosphorylation by protein kinase C inhibits assembly-promoting activity of microtubule-associated protein 4.
    Mori A; Aizawa H; Saido TC; Kawasaki H; Mizuno K; Murofushi H; Suzuki K; Sakai H
    Biochemistry; 1991 Sep; 30(38):9341-6. PubMed ID: 1892837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The phosphorylation state of threonine-220, a uniquely phosphatase-sensitive protein kinase A site in microtubule-associated protein MAP2c, regulates microtubule binding and stability.
    Alexa A; Schmidt G; Tompa P; Ogueta S; Vázquez J; Kulcsár P; Kovács J; Dombrádi V; Friedrich P
    Biochemistry; 2002 Oct; 41(41):12427-35. PubMed ID: 12369833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Tau and MAP2 as novel substrates of Rho-kinase and myosin phosphatase.
    Amano M; Kaneko T; Maeda A; Nakayama M; Ito M; Yamauchi T; Goto H; Fukata Y; Oshiro N; Shinohara A; Iwamatsu A; Kaibuchi K
    J Neurochem; 2003 Nov; 87(3):780-90. PubMed ID: 14535960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular motors and a spectrin matrix associate with Golgi membranes in vitro.
    Fath KR; Trimbur GM; Burgess DR
    J Cell Biol; 1997 Dec; 139(5):1169-81. PubMed ID: 9382864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dephosphorylation of Tctex2-related dynein light chain by type 2A protein phosphatase.
    Inaba K
    Biochem Biophys Res Commun; 2002 Oct; 297(4):800-5. PubMed ID: 12359223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation-dependent localization of microtubule-associated protein MAP2c to the actin cytoskeleton.
    Ozer RS; Halpain S
    Mol Biol Cell; 2000 Oct; 11(10):3573-87. PubMed ID: 11029056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein phosphatase 2A, a negative regulator of the ERK signaling pathway, is activated by tyrosine phosphorylation of putative HLA class II-associated protein I (PHAPI)/pp32 in response to the antiproliferative lectin, jacalin.
    Yu LG; Packman LC; Weldon M; Hamlett J; Rhodes JM
    J Biol Chem; 2004 Oct; 279(40):41377-83. PubMed ID: 15247276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A membrane protein enriched in endoplasmic reticulum exit sites interacts with COPII.
    Tang BL; Ong YS; Huang B; Wei S; Wong ET; Qi R; Horstmann H; Hong W
    J Biol Chem; 2001 Oct; 276(43):40008-17. PubMed ID: 11489904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for the regulation of exocytic transport by protein phosphorylation.
    Davidson HW; McGowan CH; Balch WE
    J Cell Biol; 1992 Mar; 116(6):1343-55. PubMed ID: 1311711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.