These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 9374850)

  • 41. Cystic fibrosis transmembrane conductance regulator: the first nucleotide binding fold targets the membrane with retention of its ATP binding function.
    Ko YH; Delannoy M; Pedersen PL
    Biochemistry; 1997 Apr; 36(16):5053-64. PubMed ID: 9125527
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney.
    Lu M; Leng Q; Egan ME; Caplan MJ; Boulpaep EL; Giebisch GH; Hebert SC
    J Clin Invest; 2006 Mar; 116(3):797-807. PubMed ID: 16470247
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Steady-state interactions of glibenclamide with CFTR: evidence for multiple sites in the pore.
    Zhang ZR; Zeltwanger S; McCarty NA
    J Membr Biol; 2004 May; 199(1):15-28. PubMed ID: 15366420
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mechanisms for the time-dependent decay of inward currents through cloned Kir2.1 channels expressed in Xenopus oocytes.
    Shieh RC
    J Physiol; 2000 Jul; 526 Pt 2(Pt 2):241-52. PubMed ID: 10896715
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cooperative binding of ATP and MgADP in the sulfonylurea receptor is modulated by glibenclamide.
    Ueda K; Komine J; Matsuo M; Seino S; Amachi T
    Proc Natl Acad Sci U S A; 1999 Feb; 96(4):1268-72. PubMed ID: 9990013
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Severed molecules functionally define the boundaries of the cystic fibrosis transmembrane conductance regulator's NH(2)-terminal nucleotide binding domain.
    Chan KW; Csanády L; Seto-Young D; Nairn AC; Gadsby DC
    J Gen Physiol; 2000 Aug; 116(2):163-80. PubMed ID: 10919864
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Potent stimulation and inhibition of the CFTR Cl(-) current by phloxine B.
    Bachmann A; Russ U; Waldegger S; Quast U
    Br J Pharmacol; 2000 Oct; 131(3):433-40. PubMed ID: 11015292
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functional integrity of the vesicle transporting machinery is required for complete activation of cFTR expressed in xenopus laevis oocytes.
    Weber WM; Segal A; Simaels J; Vankeerberghen A; Cassiman JJ; Van Driessche W
    Pflugers Arch; 2001 Mar; 441(6):850-9. PubMed ID: 11316271
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tissue specificity of sulfonylureas: studies on cloned cardiac and beta-cell K(ATP) channels.
    Gribble FM; Tucker SJ; Seino S; Ashcroft FM
    Diabetes; 1998 Sep; 47(9):1412-8. PubMed ID: 9726229
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inhibitory effects of glibenclamide on cystic fibrosis transmembrane regulator, swelling-activated, and Ca(2+)-activated Cl- channels in mammalian cardiac myocytes.
    Yamazaki J; Hume JR
    Circ Res; 1997 Jul; 81(1):101-9. PubMed ID: 9201033
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Potent inhibition of the CFTR chloride channel by suramin.
    Bachmann A; Russ U; Quast U
    Naunyn Schmiedebergs Arch Pharmacol; 1999 Oct; 360(4):473-6. PubMed ID: 10551285
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of functional interaction between K(+) channel alpha- and beta-subunits and putative inactivation gating by Co-expression in Xenopus laevis oocytes.
    Zhang X; Ma J; Berkowitz GA
    Plant Physiol; 1999 Nov; 121(3):995-1002. PubMed ID: 10557249
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Regulation of Kir channels by intracellular pH and extracellular K(+): mechanisms of coupling.
    Dahlmann A; Li M; Gao Z; McGarrigle D; Sackin H; Palmer LG
    J Gen Physiol; 2004 Apr; 123(4):441-54. PubMed ID: 15051808
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of human cystic fibrosis transmembrane conductance regulator (CFTR) by serum- and glucocorticoid-inducible kinase (SGK1).
    Sato JD; Chapline MC; Thibodeau R; Frizzell RA; Stanton BA
    Cell Physiol Biochem; 2007; 20(1-4):91-8. PubMed ID: 17595519
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA-regulated apical chloride channels in cortical collecting duct.
    Lu M; Dong K; Egan ME; Giebisch GH; Boulpaep EL; Hebert SC
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6082-7. PubMed ID: 20231442
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparative pharmacology of the activity of wild-type and G551D mutated CFTR chloride channel: effect of the benzimidazolone derivative NS004.
    Dérand R; Bulteau-Pignoux L; Becq F
    J Membr Biol; 2003 Jul; 194(2):109-17. PubMed ID: 14502435
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The CLIC1 chloride channel is regulated by the cystic fibrosis transmembrane conductance regulator when expressed in Xenopus oocytes.
    Edwards JC
    J Membr Biol; 2006; 213(1):39-46. PubMed ID: 17347778
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A conserved region of the R domain of cystic fibrosis transmembrane conductance regulator is important in processing and function.
    Pasyk EA; Morin XK; Zeman P; Garami E; Galley K; Huan LJ; Wang Y; Bear CE
    J Biol Chem; 1998 Nov; 273(48):31759-64. PubMed ID: 9822639
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Novel subunit composition of a renal epithelial KATP channel.
    Ruknudin A; Schulze DH; Sullivan SK; Lederer WJ; Welling PA
    J Biol Chem; 1998 Jun; 273(23):14165-71. PubMed ID: 9603917
    [TBL] [Abstract][Full Text] [Related]  

  • 60. cAMP-stimulated ion currents in Xenopus oocytes expressing CFTR cRNA.
    Cunningham SA; Worrell RT; Benos DJ; Frizzell RA
    Am J Physiol; 1992 Mar; 262(3 Pt 1):C783-8. PubMed ID: 1372482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.