BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 9374852)

  • 1. Four distinct cyclin-dependent kinases phosphorylate histone H1 at all of its growth-related phosphorylation sites.
    Swank RA; Th'ng JP; Guo XW; Valdez J; Bradbury EM; Gurley LR
    Biochemistry; 1997 Nov; 36(45):13761-8. PubMed ID: 9374852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trypanosoma cruzi histone H1 is phosphorylated in a typical cyclin dependent kinase site accordingly to the cell cycle.
    da Cunha JP; Nakayasu ES; Elias MC; Pimenta DC; Téllez-Iñón MT; Rojas F; Muñoz MJ; Almeida IC; Schenkman S
    Mol Biochem Parasitol; 2005 Mar; 140(1):75-86. PubMed ID: 15694489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preferences for phosphorylation sites in the retinoblastoma protein of D-type cyclin-dependent kinases, Cdk4 and Cdk6, in vitro.
    Takaki T; Fukasawa K; Suzuki-Takahashi I; Semba K; Kitagawa M; Taya Y; Hirai H
    J Biochem; 2005 Mar; 137(3):381-6. PubMed ID: 15809340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential stage-specific regulation of cyclin-dependent kinases during cambial dormancy in hybrid aspen.
    Espinosa-Ruiz A; Saxena S; Schmidt J; Mellerowicz E; Miskolczi P; Bakó L; Bhalerao RP
    Plant J; 2004 May; 38(4):603-15. PubMed ID: 15125767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme-linked immunosorbent assay for distinct cyclin-dependent kinase activities using phosphorylation-site-specific anti-pRB monoclonal antibodies.
    Suzuki S; Tamai K; Yoshida S
    Anal Biochem; 2002 Feb; 301(1):65-74. PubMed ID: 11811968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monoclonal antibody specific for histone H1 phosphorylated by cyclin-dependent kinases: a novel immunohistochemical probe of proliferation and neoplasia.
    Burstein DE; Oami S; Dembitzer F; Chu C; Cernaianu G; Leytin A; Misilim E; Jammula SR; Strauchen J; Kohtz DS
    Mod Pathol; 2002 Jul; 15(7):705-11. PubMed ID: 12118107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silymarin and silibinin cause G1 and G2-M cell cycle arrest via distinct circuitries in human prostate cancer PC3 cells: a comparison of flavanone silibinin with flavanolignan mixture silymarin.
    Deep G; Singh RP; Agarwal C; Kroll DJ; Agarwal R
    Oncogene; 2006 Feb; 25(7):1053-69. PubMed ID: 16205633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors.
    Pavletich NP
    J Mol Biol; 1999 Apr; 287(5):821-8. PubMed ID: 10222191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of the Cdc42p GTPase by cyclin-dependent protein kinases in budding yeast.
    Sopko R; Huang D; Smith JC; Figeys D; Andrews BJ
    EMBO J; 2007 Oct; 26(21):4487-500. PubMed ID: 17853895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of an effector protein and gain-of-function mutants that activate Pfmrk, a malarial cyclin-dependent protein kinase.
    Chen Y; Jirage D; Caridha D; Kathcart AK; Cortes EA; Dennull RA; Geyer JA; Prigge ST; Waters NC
    Mol Biochem Parasitol; 2006 Sep; 149(1):48-57. PubMed ID: 16737745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. p42/p44 MAPKs are intracellular targets of the CDK inhibitor purvalanol.
    Knockaert M; Lenormand P; Gray N; Schultz P; Pouysségur J; Meijer L
    Oncogene; 2002 Sep; 21(42):6413-24. PubMed ID: 12226745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation of the Pro-X-Thr-Pro site in phosphatase inhibitor-2 by cyclin-dependent protein kinase during M-phase of the cell cycle.
    Li M; Stefansson B; Wang W; Schaefer EM; Brautigan DL
    Cell Signal; 2006 Aug; 18(8):1318-26. PubMed ID: 16377132
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of cyclins and cdks throughout murine carcinogenesis.
    Yerly-Motta V; Contassot E; Pavy JJ; Tiberghien P; Hervé P
    Cell Mol Biol (Noisy-le-grand); 1999 Dec; 45(8):1217-28. PubMed ID: 10643971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo phosphorylation of histone H1 variants during the cell cycle.
    Talasz H; Helliger W; Puschendorf B; Lindner H
    Biochemistry; 1996 Feb; 35(6):1761-7. PubMed ID: 8639656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histone kinase activities in normal and transformed mouse cells.
    Sykes DE; Hohmann P
    Cancer Biochem Biophys; 1985 Feb; 7(4):317-23. PubMed ID: 2983880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitotic timing is differentially controlled by A- and B-type cyclins and by CDC6 associated with a
    El Dika M; Wechselberger L; Djeghout B; Benouareth DE; Jęderka K; Lewicki S; Zdanowski R; Prigent C; Kloc M; Kubiak JZ
    Int J Dev Biol; 2021; 65(7-8-9):487-496. PubMed ID: 34549800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. M phase-specific phosphorylation of histone H1.5 at threonine 10 by GSK-3.
    Happel N; Stoldt S; Schmidt B; Doenecke D
    J Mol Biol; 2009 Feb; 386(2):339-50. PubMed ID: 19136008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the mitotic specific phosphorylation site of histone H1. Absence of a consensus sequence for the p34cdc2/cyclin B kinase.
    Gurley LR; Valdez JG; Buchanan JS
    J Biol Chem; 1995 Nov; 270(46):27653-60. PubMed ID: 7499230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation of linker histones by cAMP-dependent protein kinase in mitotic micronuclei of Tetrahymena.
    Sweet MT; Allis CD
    Chromosoma; 1993 Nov; 102(9):637-47. PubMed ID: 8306826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-specific regulation of histone H1 phosphorylation in pluripotent cell differentiation.
    Liao R; Mizzen CA
    Epigenetics Chromatin; 2017; 10():29. PubMed ID: 28539972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.