BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 9374862)

  • 1. The molecular basis of Celmer's rules: the stereochemistry of the condensation step in chain extension on the erythromycin polyketide synthase.
    Weissman KJ; Timoney M; Bycroft M; Grice P; Hanefeld U; Staunton J; Leadlay PF
    Biochemistry; 1997 Nov; 36(45):13849-55. PubMed ID: 9374862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin of starter units for erythromycin biosynthesis.
    Weissman KJ; Bycroft M; Staunton J; Leadlay PF
    Biochemistry; 1998 Aug; 37(31):11012-7. PubMed ID: 9692995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissecting the role of acyltransferase domains of modular polyketide synthases in the choice and stereochemical fate of extender units.
    Lau J; Fu H; Cane DE; Khosla C
    Biochemistry; 1999 Feb; 38(5):1643-51. PubMed ID: 9931032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Erythromycin biosynthesis: kinetic studies on a fully active modular polyketide synthase using natural and unnatural substrates.
    Pieper R; Ebert-Khosla S; Cane D; Khosla C
    Biochemistry; 1996 Feb; 35(7):2054-60. PubMed ID: 8652546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and characterization of bimodular and trimodular derivatives of the erythromycin polyketide synthase.
    Pieper R; Gokhale RS; Luo G; Cane DE; Khosla C
    Biochemistry; 1997 Feb; 36(7):1846-51. PubMed ID: 9048569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular basis of Celmer's rules: the role of two ketoreductase domains in the control of chirality by the erythromycin modular polyketide synthase.
    Holzbaur IE; Harris RC; Bycroft M; Cortes J; Bisang C; Staunton J; Rudd BA; Leadlay PF
    Chem Biol; 1999 Apr; 6(4):189-95. PubMed ID: 10099131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous priming of a downstream module in 6-deoxyerythronolide B synthase leads to polyketide biosynthesis.
    Jacobsen JR; Cane DE; Khosla C
    Biochemistry; 1998 Apr; 37(14):4928-34. PubMed ID: 9538011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stereospecific acyl transfers on the erythromycin-producing polyketide synthase.
    Marsden AF; Caffrey P; Aparicio JF; Loughran MS; Staunton J; Leadlay PF
    Science; 1994 Jan; 263(5145):378-80. PubMed ID: 8278811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic analysis of acyl transferase domain exchange in polyketide synthase modules.
    Hans M; Hornung A; Dziarnowski A; Cane DE; Khosla C
    J Am Chem Soc; 2003 May; 125(18):5366-74. PubMed ID: 12720450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression and kinetic analysis of the substrate specificity of modules 5 and 6 of the picromycin/methymycin polyketide synthase.
    Yin Y; Lu H; Khosla C; Cane DE
    J Am Chem Soc; 2003 May; 125(19):5671-6. PubMed ID: 12733905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea.
    Cortes J; Haydock SF; Roberts GA; Bevitt DJ; Leadlay PF
    Nature; 1990 Nov; 348(6297):176-8. PubMed ID: 2234082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyketide synthesis in vitro on a modular polyketide synthase.
    Wiesmann KE; Cortés J; Brown MJ; Cutter AL; Staunton J; Leadlay PF
    Chem Biol; 1995 Sep; 2(9):583-9. PubMed ID: 9383462
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant polyketide synthases: a chalcone synthase-type enzyme which performs a condensation reaction with methylmalonyl-CoA in the biosynthesis of C-methylated chalcones.
    Schröder J; Raiber S; Berger T; Schmidt A; Schmidt J; Soares-Sello AM; Bardshiri E; Strack D; Simpson TJ; Veit M; Schröder G
    Biochemistry; 1998 Jun; 37(23):8417-25. PubMed ID: 9622493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model of structure and catalysis for ketoreductase domains in modular polyketide synthases.
    Reid R; Piagentini M; Rodriguez E; Ashley G; Viswanathan N; Carney J; Santi DV; Hutchinson CR; McDaniel R
    Biochemistry; 2003 Jan; 42(1):72-9. PubMed ID: 12515540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterologous expression in Escherichia coli of an intact multienzyme component of the erythromycin-producing polyketide synthase.
    Roberts GA; Staunton J; Leadlay PF
    Eur J Biochem; 1993 May; 214(1):305-11. PubMed ID: 8508800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular basis of Celmer's rules: role of the ketosynthase domain in epimerisation and demonstration that ketoreductase domains can have altered product specificity with unnatural substrates.
    Holzbaur IE; Ranganathan A; Thomas IP; Kearney DJ; Reather JA; Rudd BA; Staunton J; Leadlay PF
    Chem Biol; 2001 Apr; 8(4):329-40. PubMed ID: 11325589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient purification and kinetic characterization of a bimodular derivative of the erythromycin polyketide synthase.
    Bycroft M; Weissman KJ; Staunton J; Leadlay PF
    Eur J Biochem; 2000 Jan; 267(2):520-6. PubMed ID: 10632721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for two catalytically independent clusters of active sites in a functional modular polyketide synthase.
    Kao CM; Pieper R; Cane DE; Khosla C
    Biochemistry; 1996 Sep; 35(38):12363-8. PubMed ID: 8823171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An unexpected interaction between the modular polyketide synthases, erythromycin DEBS1 and pikromycin PikAIV, leads to efficient triketide lactone synthesis.
    Kim BS; Cropp TA; Florova G; Lindsay Y; Sherman DH; Reynolds KA
    Biochemistry; 2002 Sep; 41(35):10827-33. PubMed ID: 12196022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 6-Deoxyerythronolide B analogue production in Escherichia coli through metabolic pathway engineering.
    Kennedy J; Murli S; Kealey JT
    Biochemistry; 2003 Dec; 42(48):14342-8. PubMed ID: 14640703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.