These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 9374865)

  • 1. Structure-function relationships in helix-bundle channels probed via total chemical synthesis of alamethicin dimers: effects of a Gln7 to Asn7 mutation.
    Jaikaran DC; Biggin PC; Wenschuh H; Sansom MS; Woolley GA
    Biochemistry; 1997 Nov; 36(45):13873-81. PubMed ID: 9374865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering stabilized ion channels: covalent dimers of alamethicin.
    You S; Peng S; Lien L; Breed J; Sansom MS; Woolley GA
    Biochemistry; 1996 May; 35(20):6225-32. PubMed ID: 8639562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An anion-selective analogue of the channel-forming peptide alamethicin.
    Starostin AV; Butan R; Borisenko V; James DA; Wenschuh H; Sansom MS; Woolley GA
    Biochemistry; 1999 May; 38(19):6144-50. PubMed ID: 10320341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion channels of N-terminally linked alamethicin dimers: enhancement of cation-selectivity by substitution of Glu for Gln at position 7.
    Okazaki T; Nagaoka Y; Asami K
    Bioelectrochemistry; 2007 May; 70(2):380-6. PubMed ID: 16814617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ferrocenoyl derivatives of alamethicin: redox-sensitive ion channels.
    Schmitt JD; Sansom MS; Kerr ID; Lunt GG; Eisenthal R
    Biochemistry; 1997 Feb; 36(5):1115-22. PubMed ID: 9033402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering charge selectivity in model ion channels.
    Lougheed T; Zhang Z; Andrew Woolley G; Borisenko V
    Bioorg Med Chem; 2004 Mar; 12(6):1337-42. PubMed ID: 15018905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Packing interactions of Aib-containing helices: molecular modeling of parallel dimers of simple hydrophobic helices and of alamethicin.
    Breed J; Kerr ID; Sankararamakrishnan R; Sansom MS
    Biopolymers; 1995 Jun; 35(6):639-55. PubMed ID: 7766829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane structure of voltage-gated channel forming peptides by site-directed spin-labeling.
    Barranger-Mathys M; Cafiso DS
    Biochemistry; 1996 Jan; 35(2):498-505. PubMed ID: 8555220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ion channel stabilization of synthetic alamethicin analogs by rings of inter-helix H-bonds.
    Molle G; Dugast JY; Spach G; Duclohier H
    Biophys J; 1996 Apr; 70(4):1669-75. PubMed ID: 8785325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Channel properties of template assembled alamethicin tetramers.
    Duclohier H; Alder G; Kociolek K; Leplawy MT
    J Pept Sci; 2003; 9(11-12):776-83. PubMed ID: 14658797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of proline-14 substitution on the secondary structure in a synthetic analogue of alamethicin.
    Brachais L; Duclohier H; Mayer C; Davoust D; Molle G
    Biopolymers; 1995 Oct; 36(4):547-58. PubMed ID: 7578948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Template-free self-assembling fullerene and lipopeptide conjugates of alamethicin form voltage-dependent ion channels of remarkable stability and activity.
    Jung G; Redemann T; Kroll K; Meder S; Hirsch A; Boheim G
    J Pept Sci; 2003; 9(11-12):784-98. PubMed ID: 14658798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional modifications of alamethicin ion channels by substitution of glutamine 7, glycine 11 and proline 14.
    Kaduk C; Dathe M; Bienert M
    Biochim Biophys Acta; 1998 Aug; 1373(1):137-46. PubMed ID: 9733952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation studies of alamethicin-bilayer interactions.
    Biggin PC; Breed J; Son HS; Sansom MS
    Biophys J; 1997 Feb; 72(2 Pt 1):627-36. PubMed ID: 9017192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion-channel formation assisted by electrostatic interhelical interactions in covalently dimerized amphiphilic helical peptides.
    Taira J; Jelokhani-Niaraki M; Osada S; Kato F; Kodama H
    Biochemistry; 2008 Mar; 47(12):3705-14. PubMed ID: 18302338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic rectification of ion flux in alamethicin channels: studies with an alamethicin dimer.
    Woolley GA; Biggin PC; Schultz A; Lien L; Jaikaran DC; Breed J; Crowhurst K; Sansom MS
    Biophys J; 1997 Aug; 73(2):770-8. PubMed ID: 9251793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Backbone dynamics of detergent-solubilized alamethicin from amide hydrogen exchange measurements.
    Yee A; Szymczyna B; O'Neil JD
    Biochemistry; 1999 May; 38(20):6489-98. PubMed ID: 10350467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and conformation of non-Aib synthetic peptides enjoying alamethicin-like ionophore activity.
    Molle G; Duclohier H; Dugast JY; Spach G
    Biopolymers; 1989 Jan; 28(1):273-83. PubMed ID: 2720109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of channel formation by alamethicin as viewed by molecular dynamics simulations.
    Sansom MS; Tieleman DP; Berendsen HJ
    Novartis Found Symp; 1999; 225():128-41; discussion 141-5. PubMed ID: 10472052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aggregation and porin-like channel activity of a beta sheet peptide.
    Thundimadathil J; Roeske RW; Jiang HY; Guo L
    Biochemistry; 2005 Aug; 44(30):10259-70. PubMed ID: 16042403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.