These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 9375252)

  • 1. Site-specific incorporation of biotinylated amino acids to identify surface-exposed residues in integral membrane proteins.
    Gallivan JP; Lester HA; Dougherty DA
    Chem Biol; 1997 Oct; 4(10):739-49. PubMed ID: 9375252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dose-response relations for unnatural amino acids at the agonist binding site of the nicotinic acetylcholine receptor: tests with novel side chains and with several agonists.
    Kearney PC; Nowak MW; Zhong W; Silverman SK; Lester HA; Dougherty DA
    Mol Pharmacol; 1996 Nov; 50(5):1401-12. PubMed ID: 8913372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The tethered agonist approach to mapping ion channel proteins--toward a structural model for the agonist binding site of the nicotinic acetylcholine receptor.
    Li L; Zhong W; Zacharias N; Gibbs C; Lester HA; Dougherty DA
    Chem Biol; 2001 Jan; 8(1):47-58. PubMed ID: 11182318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of caged cysteine and caged tyrosine into a transmembrane segment of the nicotinic ACh receptor.
    Philipson KD; Gallivan JP; Brandt GS; Dougherty DA; Lester HA
    Am J Physiol Cell Physiol; 2001 Jul; 281(1):C195-206. PubMed ID: 11401842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aromaticity at the water-hydrocarbon core interface of the membrane: consequences on the nicotinic acetylcholine receptor.
    Lizardi-Ortiz JE; Hyzinski-García MC; Fernández-Gerena JL; Osorio-Martínez KM; Velázquez-Rivera E; Valle-Avilés FL; Lasalde-Dominicci JA
    Channels (Austin); 2008; 2(3):191-201. PubMed ID: 18836298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reporter epitopes: a novel approach to examine transmembrane topology of integral membrane proteins applied to the alpha 1 subunit of the nicotinic acetylcholine receptor.
    Anand R; Bason L; Saedi MS; Gerzanich V; Peng X; Lindstrom J
    Biochemistry; 1993 Sep; 32(38):9975-84. PubMed ID: 7691173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contributions of N-linked glycosylation to the expression of a functional alpha7-nicotinic receptor in Xenopus oocytes.
    Chen D; Dang H; Patrick JW
    J Neurochem; 1998 Jan; 70(1):349-57. PubMed ID: 9422381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nicotinic receptor binding site probed with unnatural amino acid incorporation in intact cells.
    Nowak MW; Kearney PC; Sampson JR; Saks ME; Labarca CG; Silverman SK; Zhong W; Thorson J; Abelson JN; Davidson N
    Science; 1995 Apr; 268(5209):439-42. PubMed ID: 7716551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single amino acid residue in the extracellular portion of transmembrane segment 2 in the nicotinic alpha7 acetylcholine receptor modulates sensitivity to ketamine.
    Ho KK; Flood P
    Anesthesiology; 2004 Mar; 100(3):657-62. PubMed ID: 15108982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tyrosine residues that control binding and gating in the 5-hydroxytryptamine3 receptor revealed by unnatural amino acid mutagenesis.
    Beene DL; Price KL; Lester HA; Dougherty DA; Lummis SC
    J Neurosci; 2004 Oct; 24(41):9097-104. PubMed ID: 15483128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-Directed Unnatural Amino Acid Mutagenesis to Investigate Potassium Channel Pharmacology in Xenopus laevis Oocytes.
    Kim RY; Kurata HT
    Methods Mol Biol; 2018; 1684():253-263. PubMed ID: 29058197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-specific insertion of spin-labeled L-amino acids in Xenopus oocytes.
    Shafer AM; Kálai T; Bin Liu SQ; Hideg K; Voss JC
    Biochemistry; 2004 Jul; 43(26):8470-82. PubMed ID: 15222758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational analysis of roles for extracellular cysteine residues in the assembly and function of human alpha 7-nicotinic acetylcholine receptors.
    Dunckley T; Wu J; Zhao L; Lukas RJ
    Biochemistry; 2003 Feb; 42(4):870-6. PubMed ID: 12549904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo incorporation of unnatural amino acids into ion channels in Xenopus oocyte expression system.
    Nowak MW; Gallivan JP; Silverman SK; Labarca CG; Dougherty DA; Lester HA
    Methods Enzymol; 1998; 293():504-29. PubMed ID: 9711626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalent modification of engineered cysteines in the nicotinic acetylcholine receptor agonist-binding domain inhibits receptor activation.
    McLaughlin JT; Hawrot E; Yellen G
    Biochem J; 1995 Sep; 310 ( Pt 3)(Pt 3):765-9. PubMed ID: 7575408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific, photochemical proteolysis applied to ion channels in vivo.
    England PM; Lester HA; Davidson N; Dougherty DA
    Proc Natl Acad Sci U S A; 1997 Sep; 94(20):11025-30. PubMed ID: 9380753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two domains of the beta subunit of neuronal nicotinic acetylcholine receptors contribute to the affinity of substance P.
    Stafford GA; Oswald RE; Figl A; Cohen BN; Weiland GA
    J Pharmacol Exp Ther; 1998 Aug; 286(2):619-26. PubMed ID: 9694912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role in the selectivity of neonicotinoids of insect-specific basic residues in loop D of the nicotinic acetylcholine receptor agonist binding site.
    Shimomura M; Yokota M; Ihara M; Akamatsu M; Sattelle DB; Matsuda K
    Mol Pharmacol; 2006 Oct; 70(4):1255-63. PubMed ID: 16868180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping the agonist binding site of the nicotinic acetylcholine receptor by cysteine scanning mutagenesis: antagonist footprint and secondary structure prediction.
    Sullivan D; Chiara DC; Cohen JB
    Mol Pharmacol; 2002 Feb; 61(2):463-72. PubMed ID: 11809872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conserved cysteine residues in the extracellular loop of the human P2X(1) receptor form disulfide bonds and are involved in receptor trafficking to the cell surface.
    Ennion SJ; Evans RJ
    Mol Pharmacol; 2002 Feb; 61(2):303-11. PubMed ID: 11809854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.