These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 9375346)

  • 1. Stretch-induced enhancement of mechanical work production in frog single fibers and human muscle.
    Takarada Y; Iwamoto H; Sugi H; Hirano Y; Ishii N
    J Appl Physiol (1985); 1997 Nov; 83(5):1741-8. PubMed ID: 9375346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of shortening on stretch-induced force enhancement in single skeletal muscle fibers.
    Rassier DE; Herzog W
    J Biomech; 2004 Sep; 37(9):1305-12. PubMed ID: 15275837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stretch-induced, steady-state force enhancement in single skeletal muscle fibers exceeds the isometric force at optimum fiber length.
    Rassier DE; Herzog W; Wakeling J; Syme DA
    J Biomech; 2003 Sep; 36(9):1309-16. PubMed ID: 12893039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship between short-range stiffness and yielding in type-identified, chemically skinned muscle fibers from the cat triceps surae muscles.
    Malamud JG; Godt RE; Nichols TR
    J Neurophysiol; 1996 Oct; 76(4):2280-9. PubMed ID: 8899603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active shortening protects against stretch-induced force deficits in human skeletal muscle.
    Saripalli AL; Sugg KB; Mendias CL; Brooks SV; Claflin DR
    J Appl Physiol (1985); 2017 May; 122(5):1218-1226. PubMed ID: 28235860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A non-cross-bridge stiffness in activated frog muscle fibers.
    Bagni MA; Cecchi G; Colombini B; Colomo F
    Biophys J; 2002 Jun; 82(6):3118-27. PubMed ID: 12023235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fiber-type dependence of stretch-induced force enhancement in rat skeletal muscle.
    Ramsey KA; Bakker AJ; Pinniger GJ
    Muscle Nerve; 2010 Nov; 42(5):769-77. PubMed ID: 20976780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy storage during stretch of active single fibres from frog skeletal muscle.
    Linari M; Woledge RC; Curtin NA
    J Physiol; 2003 Apr; 548(Pt 2):461-74. PubMed ID: 12598584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active force inhibition and stretch-induced force enhancement in frog muscle treated with BDM.
    Rassier DE; Herzog W
    J Appl Physiol (1985); 2004 Oct; 97(4):1395-400. PubMed ID: 15194676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscle mechanics: adaptations with exercise-training.
    Fitts RH; Widrick JJ
    Exerc Sport Sci Rev; 1996; 24():427-73. PubMed ID: 8744258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peak power of muscles injured by lengthening contractions.
    Widrick JJ; Barker T
    Muscle Nerve; 2006 Oct; 34(4):470-7. PubMed ID: 16810694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Severity of contraction-induced injury is affected by velocity only during stretches of large strain.
    Brooks SV; Faulkner JA
    J Appl Physiol (1985); 2001 Aug; 91(2):661-6. PubMed ID: 11457778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for two distinct cross-bridge populations in tetanized frog muscle fibers stretched with moderate velocities.
    Kobayashi T; Kosuge S; Narushima K; Sugi H
    Biochem Biophys Res Commun; 1998 Aug; 249(1):161-5. PubMed ID: 9705849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contraction-induced injury to single muscle fibers: velocity of stretch does not influence the force deficit.
    Lynch GS; Faulkner JA
    Am J Physiol; 1998 Dec; 275(6):C1548-54. PubMed ID: 9843716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical work as predictor of force enhancement and force depression.
    Kosterina N; Westerblad H; Eriksson A
    J Biomech; 2009 Aug; 42(11):1628-34. PubMed ID: 19486981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of energy output during ramp and staircase shortening in frog muscle fibres.
    Linari M; Woledge RC
    J Physiol; 1995 Sep; 487 ( Pt 3)(Pt 3):699-710. PubMed ID: 8544132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recruitment of triceps surae motor units in the decerebrate cat. II. Heterogeneity among soleus motor units.
    Sokoloff AJ; Cope TC
    J Neurophysiol; 1996 May; 75(5):2005-16. PubMed ID: 8734599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residual force enhancement after lengthening is present during submaximal plantar flexion and dorsiflexion actions in humans.
    Pinniger GJ; Cresswell AG
    J Appl Physiol (1985); 2007 Jan; 102(1):18-25. PubMed ID: 16946022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for increased low force cross-bridge population in shortening skinned skeletal muscle fibers: implications for actomyosin kinetics.
    Iwamoto H
    Biophys J; 1995 Sep; 69(3):1022-35. PubMed ID: 8519957
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of prestretch at the onset of stimulation on mechanical work output of rat medial gastrocnemius muscle-tendon complex.
    Ettema GJ; Huijing PA; van Ingen Schenau GJ; de Haan A
    J Exp Biol; 1990 Sep; 152():333-51. PubMed ID: 2230638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.