These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 9375355)

  • 41. Removal of Pb2+, Ag+, Cs+ and Sr2+ from aqueous solution by brewery's waste biomass.
    Chen C; Wang J
    J Hazard Mater; 2008 Feb; 151(1):65-70. PubMed ID: 17604909
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Natural seaweed waste as sorbent for heavy metal removal from solution.
    Ahmady-Asbchin S; Andres Y; Gerente C; Le Cloirec P
    Environ Technol; 2009 Jun; 30(7):755-62. PubMed ID: 19705613
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biosorption of heavy metals by activated sludge and their desorption characteristics.
    Hammaini A; González F; Ballester A; Blázquez ML; Muñoz JA
    J Environ Manage; 2007 Sep; 84(4):419-26. PubMed ID: 16979281
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identification and localization of the Tgl protein, which is required for Myxococcus xanthus social motility.
    Rodriguez-Soto JP; Kaiser D
    J Bacteriol; 1997 Jul; 179(13):4372-81. PubMed ID: 9209056
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fungal biosorption--an alternative to meet the challenges of heavy metal pollution in aqueous solutions.
    Dhankhar R; Hooda A
    Environ Technol; 2011 Apr; 32(5-6):467-91. PubMed ID: 21877528
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Equilibrium and kinetics studies of heavy metal ions biosorption on green algae waste biomass.
    Bulgariu D; Bulgariu L
    Bioresour Technol; 2012 Jan; 103(1):489-93. PubMed ID: 22055103
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents.
    Ayangbenro AS; Babalola OO
    Int J Environ Res Public Health; 2017 Jan; 14(1):. PubMed ID: 28106848
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biosorbents for heavy metals removal and their future.
    Wang J; Chen C
    Biotechnol Adv; 2009; 27(2):195-226. PubMed ID: 19103274
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Surface display of synthetic phytochelatins on Saccharomyces cerevisiae for enhanced ethanol production in heavy metal-contaminated substrates.
    Yang CE; Chu IM; Wei YH; Tsai SL
    Bioresour Technol; 2017 Dec; 245(Pt B):1455-1460. PubMed ID: 28596072
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biosorption of heavy metals by obligate halophilic fungi.
    Bano A; Hussain J; Akbar A; Mehmood K; Anwar M; Hasni MS; Ullah S; Sajid S; Ali I
    Chemosphere; 2018 May; 199():218-222. PubMed ID: 29438949
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Induction of Bacillus anthracis hemolytic activity with the use of Myxococcus xanthus].
    Bulantsev AL; Elizarov VV; Lipnitskiĭ AV
    Zh Mikrobiol Epidemiol Immunobiol; 2006; (3):7-10. PubMed ID: 16830581
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biosorption of heavy metal ions from aqueous solution by red macroalgae.
    Ibrahim WM
    J Hazard Mater; 2011 Sep; 192(3):1827-35. PubMed ID: 21798665
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Regulation of sulfates, hydrogen sulfide and heavy metals in technogenic reservoirs by sulfate-reducing bacteria].
    Hudz' SP; Peretiatko TB; Moroz OM; Hnatush SO; Klym IR
    Mikrobiol Z; 2011; 73(2):33-8. PubMed ID: 21598657
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Further characterization and in situ localization of chain-like aggregates of the gliding bacteria Myxococcus fulvus and Myxococcus xanthus.
    Freese A; Reichenbach H; Lünsdorf H
    J Bacteriol; 1997 Feb; 179(4):1246-52. PubMed ID: 9023208
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biosorption of copper by cyanobacterial bloom-derived biomass harvested from the eutrophic Lake Dianchi in China.
    Wang K; Colica G; De Philippis R; Liu Y; Li D
    Curr Microbiol; 2010 Oct; 61(4):340-5. PubMed ID: 20213101
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biosorption of cadmium by a metal-resistant filamentous fungus isolated from chicken manure compost.
    Xu X; Xia L; Huang Q; Gu JD; Chen W
    Environ Technol; 2012; 33(13-15):1661-70. PubMed ID: 22988626
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Study of a heavy metal biosorption onto raw and chemically modified Sargassum sp. via spectroscopic and modeling analysis.
    Chen JP; Yang L
    Langmuir; 2006 Oct; 22(21):8906-14. PubMed ID: 17014134
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Mechanism of heavy-metal tolerance in Pseudomonas aeruginosa ZGKD2].
    Zhang YX; Wang J; Chai TY; Zhang Q; Liu JG; Li X; Bai ZQ; Su ZJ
    Huan Jing Ke Xue; 2012 Oct; 33(10):3613-9. PubMed ID: 23233996
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biosorption of copper(II) by nonliving lichen biomass of Cladonia rangiformis hoffm.
    Ekmekyapar F; Aslan A; Bayhan YK; Cakici A
    J Hazard Mater; 2006 Sep; 137(1):293-8. PubMed ID: 16530938
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools.
    He J; Chen JP
    Bioresour Technol; 2014 May; 160():67-78. PubMed ID: 24630371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.