BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 9376347)

  • 1. Replacement of the H-Ras farnesyl group by lipid analogues: implications for downstream processing and effector activation in Xenopus oocytes.
    Dudler T; Gelb MH
    Biochemistry; 1997 Oct; 36(41):12434-41. PubMed ID: 9376347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Farnesylation of p21 Ras proteins in Xenopus oocytes.
    Zhao J; Kung HF; Manne V
    Cell Mol Biol Res; 1994; 40(4):313-21. PubMed ID: 7866432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of small G proteins by clostridium sordellii lethal toxin activates cdc2 and MAP kinase in Xenopus oocytes.
    Rime H; Talbi N; Popoff MR; Suziedelis K; Jessus C; Ozon R
    Dev Biol; 1998 Dec; 204(2):592-602. PubMed ID: 9882492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrophilic anilinogeranyl diphosphate prenyl analogues are Ras function inhibitors.
    Roberts MJ; Troutman JM; Chehade KA; Cha HC; Kao JP; Huang X; Zhan CG; Peterson YK; Subramanian T; Kamalakkannan S; Andres DA; Spielmann HP
    Biochemistry; 2006 Dec; 45(51):15862-72. PubMed ID: 17176109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deciphering the H-Ras pathway in Xenopus oocyte.
    Gaffré M; Dupré A; Valuckaite R; Suziedelis K; Jessus C; Haccard O
    Oncogene; 2006 Aug; 25(37):5155-62. PubMed ID: 16607282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Palmitoylation of Ha-Ras facilitates membrane binding, activation of downstream effectors, and meiotic maturation in Xenopus oocytes.
    Dudler T; Gelb MH
    J Biol Chem; 1996 May; 271(19):11541-7. PubMed ID: 8626715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of H-ras61L-specific signaling pathways does not require posttranslational processing of H-ras.
    Hart KC; Robertson SC; Donoghue DJ
    Exp Cell Res; 2000 May; 257(1):89-100. PubMed ID: 10854057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the isoprenoid binding pocket of PDEdelta by a semisynthetic, photoactivatable N-Ras lipoprotein.
    Alexander M; Gerauer M; Pechlivanis M; Popkirova B; Dvorsky R; Brunsveld L; Waldmann H; Kuhlmann J
    Chembiochem; 2009 Jan; 10(1):98-108. PubMed ID: 18846587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ras/cholesterol connection: implications for ras oncogenicity.
    Cox AD; Der CJ
    Crit Rev Oncog; 1992; 3(4):365-400. PubMed ID: 1420445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MEK and ERK activation in ras-disabled RBL-2H3 mast cells and novel roles for geranylgeranylated and farnesylated proteins in Fc epsilonRI-mediated signaling.
    Graham TE; Pfeiffer JR; Lee RJ; Kusewitt DF; Martinez AM; Foutz T; Wilson BS; Oliver JM
    J Immunol; 1998 Dec; 161(12):6733-44. PubMed ID: 9862703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rit, a non-lipid-modified Ras-related protein, transforms NIH3T3 cells without activating the ERK, JNK, p38 MAPK or PI3K/Akt pathways.
    Rusyn EV; Reynolds ER; Shao H; Grana TM; Chan TO; Andres DA; Cox AD
    Oncogene; 2000 Sep; 19(41):4685-94. PubMed ID: 11032018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Xenopus H-RasV12 promotes entry into meiotic M phase and cdc2 activation independently of Mos and p42(MAPK).
    Dupré A; Suziedelis K; Valuckaite R; de Gunzburg J; Ozon R; Jessus C; Haccard O
    Oncogene; 2002 Sep; 21(42):6425-33. PubMed ID: 12226746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonconventional trafficking of Ras associated with Ras signal organization.
    Ashery U; Yizhar O; Rotblat B; Kloog Y
    Traffic; 2006 Sep; 7(9):119-26. PubMed ID: 16824054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional interactions of Raf and MEK with Jun-N-terminal kinase (JNK) result in a positive feedback loop on the oncogenic Ras signaling pathway.
    Adler V; Qu Y; Smith SJ; Izotova L; Pestka S; Kung HF; Lin M; Friedman FK; Chie L; Chung D; Boutjdir M; Pincus MR
    Biochemistry; 2005 Aug; 44(32):10784-95. PubMed ID: 16086581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible inactivation of the transcriptional function of P53 protein by farnesylation.
    Couderc B; Penary M; Tohfe M; Pradines A; Casteignau A; Berg D; Favre G
    BMC Biotechnol; 2006 May; 6():26. PubMed ID: 16732889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The farnesyl group of H-Ras facilitates the activation of a soluble upstream activator of mitogen-activated protein kinase.
    McGeady P; Kuroda S; Shimizu K; Takai Y; Gelb MH
    J Biol Chem; 1995 Nov; 270(44):26347-51. PubMed ID: 7592846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-translational processing of purified human K-ras in Xenopus oocytes.
    Kaplan JB; Sass PM
    Cancer Commun; 1991; 3(12):383-8. PubMed ID: 16296004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-molecule diffusion measurements of H-Ras at the plasma membrane of live cells reveal microdomain localization upon activation.
    Lommerse PH; Snaar-Jagalska BE; Spaink HP; Schmidt T
    J Cell Sci; 2005 May; 118(Pt 9):1799-809. PubMed ID: 15860728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prenylation of mammalian Ras protein in Xenopus oocytes.
    Kim R; Rine J; Kim SH
    Mol Cell Biol; 1990 Nov; 10(11):5945-9. PubMed ID: 2233726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of MPF and MAPK activities during meiotic maturation of Xenopus tropicalis oocytes.
    Bodart JF; Gutierrez DV; Nebreda AR; Buckner BD; Resau JR; Duesbery NS
    Dev Biol; 2002 May; 245(2):348-61. PubMed ID: 11977986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.