These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 9376368)
1. Oligomerization of the EGF receptor transmembrane domain: a 2H NMR study in lipid bilayers. Jones DH; Rigby AC; Barber KR; Grant CW Biochemistry; 1997 Oct; 36(41):12616-24. PubMed ID: 9376368 [TBL] [Abstract][Full Text] [Related]
2. Transmembrane region of the epidermal growth factor receptor: behavior and interactions via 2H NMR. Rigby AC; Barber KR; Shaw GS; Grant CW Biochemistry; 1996 Sep; 35(38):12591-601. PubMed ID: 8823197 [TBL] [Abstract][Full Text] [Related]
3. Sequence-related behaviour of transmembrane domains from class I receptor tyrosine kinases. Jones DH; Barber KR; Grant CW Biochim Biophys Acta; 1998 May; 1371(2):199-212. PubMed ID: 9630629 [TBL] [Abstract][Full Text] [Related]
4. The EGF receptor transmembrane domain: 2H NMR study of peptide phosphorylation effects in a bilayer environment. Jones DH; Barber KR; Grant CW Biochemistry; 1998 May; 37(20):7504-8. PubMed ID: 9585564 [TBL] [Abstract][Full Text] [Related]
5. Epidermal growth factor receptor transmembrane domain: 2H NMR implications for orientation and motion in a bilayer environment. Jones DH; Barber KR; VanDerLoo EW; Grant CW Biochemistry; 1998 Nov; 37(47):16780-7. PubMed ID: 9843449 [TBL] [Abstract][Full Text] [Related]
6. The EGF receptor transmembrane domain: peptide-peptide interactions in fluid bilayer membranes. Morrow MR; Grant CW Biophys J; 2000 Oct; 79(4):2024-32. PubMed ID: 11023906 [TBL] [Abstract][Full Text] [Related]
7. Nonpolar interactions between trans-membrane helical EGF peptide and phosphatidylcholines, sphingomyelins and cholesterol. Molecular dynamics simulation studies. Róg T; Murzyn K; Karttunen M; Pasenkiewicz-Gierula M J Pept Sci; 2008 Apr; 14(4):374-82. PubMed ID: 17985365 [TBL] [Abstract][Full Text] [Related]
8. Molecular dynamics of 1-palmitoyl-2-oleoylphosphatidylcholine membranes containing transmembrane alpha-helical peptides with alternating leucine and alanine residues. Subczynski WK; Pasenkiewicz-Gierula M; McElhaney RN; Hyde JS; Kusumi A Biochemistry; 2003 Apr; 42(13):3939-48. PubMed ID: 12667085 [TBL] [Abstract][Full Text] [Related]
9. Globoside as a membrane receptor: a consideration of oligosaccharide communication with the hydrophobic domain. Jones DH; Lingwood CA; Barber KR; Grant CW Biochemistry; 1997 Jul; 36(28):8539-47. PubMed ID: 9214299 [TBL] [Abstract][Full Text] [Related]
10. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes. Lu JX; Damodaran K; Blazyk J; Lorigan GA Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398 [TBL] [Abstract][Full Text] [Related]
11. Molecular organization and dynamics of 1-palmitoyl-2-oleoylphosphatidylcholine bilayers containing a transmembrane alpha-helical peptide. Subczynski WK; Lewis RN; McElhaney RN; Hodges RS; Hyde JS; Kusumi A Biochemistry; 1998 Mar; 37(9):3156-64. PubMed ID: 9485469 [TBL] [Abstract][Full Text] [Related]
12. Structural implications of a Val-->Glu mutation in transmembrane peptides from the EGF receptor. Sharpe S; Grant CW; Barber KR; Giusti J; Morrow MR Biophys J; 2001 Dec; 81(6):3231-9. PubMed ID: 11720988 [TBL] [Abstract][Full Text] [Related]
13. Val(659)-->Glu mutation within the transmembrane domain of ErbB-2: effects measured by (2)H NMR in fluid phospholipid bilayers. Sharpe S; Barber KR; Grant CW Biochemistry; 2000 May; 39(21):6572-80. PubMed ID: 10828974 [TBL] [Abstract][Full Text] [Related]
14. Evidence of a tendency to self-association of the transmembrane domain of ErbB-2 in fluid phospholipid bilayers. Sharpe S; Barber KR; Grant CW Biochemistry; 2002 Feb; 41(7):2341-52. PubMed ID: 11841227 [TBL] [Abstract][Full Text] [Related]
15. A transmembrane peptide from the human EGF receptor: behaviour of the cytoplasmic juxtamembrane domain in lipid bilayers. Sharpe S; Grant CW Biochim Biophys Acta; 2000 Sep; 1468(1-2):262-72. PubMed ID: 11018670 [TBL] [Abstract][Full Text] [Related]
16. PMP1 18-38, a yeast plasma membrane protein fragment, binds phosphatidylserine from bilayer mixtures with phosphatidylcholine: a (2)H-NMR study. Roux M; Beswick V; Coïc YM; Huynh-Dinh T; Sanson A; Neumann JM Biophys J; 2000 Nov; 79(5):2624-31. PubMed ID: 11053135 [TBL] [Abstract][Full Text] [Related]
17. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis. Ziegler A; Blatter XL; Seelig A; Seelig J Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253 [TBL] [Abstract][Full Text] [Related]
18. Investigations of polypeptide rotational diffusion in aligned membranes by 2H and 15N solid-state NMR spectroscopy. Aisenbrey C; Bechinger B J Am Chem Soc; 2004 Dec; 126(50):16676-83. PubMed ID: 15600374 [TBL] [Abstract][Full Text] [Related]
19. Conformation and ion-channeling activity of a 27-residue peptide modeled on the single-transmembrane segment of the IsK (minK) protein. Aggeli A; Bannister ML; Bell M; Boden N; Findlay JB; Hunter M; Knowles PF; Yang JC Biochemistry; 1998 Jun; 37(22):8121-31. PubMed ID: 9609707 [TBL] [Abstract][Full Text] [Related]
20. Binding of oligoarginine to membrane lipids and heparan sulfate: structural and thermodynamic characterization of a cell-penetrating peptide. Gonçalves E; Kitas E; Seelig J Biochemistry; 2005 Feb; 44(7):2692-702. PubMed ID: 15709783 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]