BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 9376711)

  • 1. Analysis of a lipase-catalyzed kinetic resolution by chiral normal-phase liquid chromatography.
    Löwendahl C; Allenmark S
    Biomed Chromatogr; 1997; 11(5):289-95. PubMed ID: 9376711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioselective lipase-catalyzed ester hydrolysis: effects on rates and enantioselectivity from a variation of the ester structure.
    Bojarski J; Oxelbark J; Andersson C; Allenmark S
    Chirality; 1993; 5(3):154-8. PubMed ID: 8338725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Candida rugosa lipase-catalysed kinetic resolution of 2-substituted-aryloxyacetic esters with dimethylsulfoxide and isopropanol as additives.
    Ammazzalorso A; Amoroso R; Bettoni G; De Filippis B; Fantacuzzi M; Giampietro L; Maccallini C; Tricca ML
    Chirality; 2008 Feb; 20(2):115-8. PubMed ID: 18074337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipase-mediated enantioselective kinetic resolution of racemic acidic drugs in non-standard organic solvents: Direct chiral liquid chromatography monitoring and accurate determination of the enantiomeric excesses.
    Ghanem A; Aboul-Enein MN; El-Azzouny A; El-Behairy MF
    J Chromatogr A; 2010 Feb; 1217(7):1063-74. PubMed ID: 19914624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct enantioselective HPLC monitoring of lipase-catalyzed kinetic resolution of flurbiprofen.
    Ghanem A
    Chirality; 2010 Jun; 22(6):597-603. PubMed ID: 19899153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic resolution to (-)-ormeloxifene intermediates from their racemates using immobilized Candida rugosa lipase.
    Lehmann SV; Breinholt J; Bury PS; Nielsen TE
    Chirality; 2000 Jul; 12(7):568-73. PubMed ID: 10861957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct enantioselective HPLC monitoring of lipase-catalyzed kinetic resolution of tiaprofenic acid in nonstandard HPLC organic solvents.
    Ghanem A; Aboul-Enein MN; El-Azzouny A; El-Behairy MF; Al-Humaidi E; Alaidan AA; Amin K; Al-Ahdal MN
    Chirality; 2008 Aug; 20(8):871-7. PubMed ID: 18246593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.
    Andrade LH; Barcellos T
    Org Lett; 2009 Jul; 11(14):3052-5. PubMed ID: 19552446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A kinetic study of lipase-catalyzed reversible kinetic resolution involving verification at miniplant-scale.
    Berendsen WR; Gendrot G; Freund A; Reuss M
    Biotechnol Bioeng; 2006 Dec; 95(5):883-92. PubMed ID: 16937404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic resolution of ibuprofen catalyzed by Candida rugosa lipase in ionic liquids.
    Hongwei Y; Jinchuan W; Chi Bun C
    Chirality; 2005 Jan; 17(1):16-21. PubMed ID: 15515047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enantioselectivity of Candida rugosa lipases (Lip1, Lip3, and Lip4) towards 2-bromo phenylacetic acid octyl esters controlled by a single amino acid.
    Piamtongkam R; Duquesne S; Bordes F; Barbe S; André I; Marty A; Chulalaksananukul W
    Biotechnol Bioeng; 2011 Aug; 108(8):1749-56. PubMed ID: 21391204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic catalysis by lipase from Candida cylindracea: enantiomeric activity evaluation by 1H and 13C NMR.
    Cernia E; Delfini M; Magri AD; Palocci C
    Cell Mol Biol (Noisy-le-grand); 1994 Mar; 40(2):193-9. PubMed ID: 8003950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of catalytic activity of lipase from Candida rugosa via sol-gel encapsulation in the presence of calix(aza)crown.
    Uyanik A; Sen N; Yilmaz M
    Bioresour Technol; 2011 Mar; 102(6):4313-8. PubMed ID: 21256747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic resolution of racemic alpha-methyl-beta-propiothiolactone by lipase-catalyzed hydrolysis.
    Hwang BY; Lee HB; Kim YG; Kim BG
    Biotechnol Prog; 2000; 16(6):973-8. PubMed ID: 11101323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipase-catalyzed kinetic resolution on solid-phase via a "capture and release" strategy.
    Humphrey CE; Turner NJ; Easson MA; Flitsch SL; Ulijn RV
    J Am Chem Soc; 2003 Nov; 125(46):13952-3. PubMed ID: 14611219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directed evolution of an enantioselective lipase with broad substrate scope for hydrolysis of alpha-substituted esters.
    Engström K; Nyhlén J; Sandström AG; Bäckvall JE
    J Am Chem Soc; 2010 May; 132(20):7038-42. PubMed ID: 20450151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enantiopure derivatives of 1,2-alkanediols: substrate requirements of lipase B from Candida antarctica.
    Jacobsen EE; Hoff BH; Anthonsen T
    Chirality; 2000 Oct; 12(9):654-9. PubMed ID: 10984738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel chromatographic resolution of chiral diacylglycerols and analysis of the stereoselective hydrolysis of triacylglycerols by lipases.
    Rodriguez JA; Mendoza LD; Pezzotti F; Vanthuyne N; Leclaire J; Verger R; Buono G; Carriere F; Fotiadu F
    Anal Biochem; 2008 Apr; 375(2):196-208. PubMed ID: 18162167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calix[n]arene carboxylic acid derivatives as regulators of enzymatic reactions: enhanced enantioselectivity in lipase-catalyzed hydrolysis of (R/S)-naproxen methyl ester.
    Akoz E; Akbulut OY; Yilmaz M
    Appl Biochem Biotechnol; 2014 Jan; 172(1):509-23. PubMed ID: 24092454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of acyl chain length and branching on the enantioselectivity of Candida rugosa lipase in the kinetic resolution of 4-(2-difluoromethoxyphenyl)-substituted 1,4-dihydropyridine 3,5-diesters.
    Sobolev A; Franssen MC; Vigante B; Cekavicus B; Zhalubovskis R; Kooijman H; Spek AL; Duburs G; de Groot A
    J Org Chem; 2002 Jan; 67(2):401-10. PubMed ID: 11798310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.