These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 9377485)
1. Evolutionary conserved cathepsin E substrate specificity as defined by N-terminal and C-terminal sequencing of peptide pools. Arnold D; Keilholz W; Schild H; Dumrese T; Stevanović S; Rammensee HG Biol Chem; 1997 Aug; 378(8):883-91. PubMed ID: 9377485 [TBL] [Abstract][Full Text] [Related]
2. Substrate specificity of cathepsins D and E determined by N-terminal and C-terminal sequencing of peptide pools. Arnold D; Keilholz W; Schild H; Dumrese T; Stevanović S; Rammensee HG Eur J Biochem; 1997 Oct; 249(1):171-9. PubMed ID: 9363769 [TBL] [Abstract][Full Text] [Related]
3. S3 to S3' subsite specificity of recombinant human cathepsin K and development of selective internally quenched fluorescent substrates. Alves MF; Puzer L; Cotrin SS; Juliano MA; Juliano L; Brömme D; Carmona AK Biochem J; 2003 Aug; 373(Pt 3):981-6. PubMed ID: 12733990 [TBL] [Abstract][Full Text] [Related]
4. Enzyme-substrate interactions in the hydrolysis of peptides by cathepsins B and H from rat liver. Brömme D; Bescherer K; Kirschke H; Fittkau S Biochem J; 1987 Jul; 245(2):381-5. PubMed ID: 3663163 [TBL] [Abstract][Full Text] [Related]
5. Lysosomal cysteine proteases (cathepsins): promising drug targets. Turk D; Guncar G Acta Crystallogr D Biol Crystallogr; 2003 Feb; 59(Pt 2):203-13. PubMed ID: 12554931 [TBL] [Abstract][Full Text] [Related]
6. Subsite specificity (S3, S2, S1', S2' and S3') of oligopeptidase B from Trypanosoma cruzi and Trypanosoma brucei using fluorescent quenched peptides: comparative study and identification of specific carboxypeptidase activity. Hemerly JP; Oliveira V; Del Nery E; Morty RE; Andrews NW; Juliano MA; Juliano L Biochem J; 2003 Aug; 373(Pt 3):933-9. PubMed ID: 12737623 [TBL] [Abstract][Full Text] [Related]
7. Exploring the binding preferences/specificity in the active site of human cathepsin E. Rao-Naik C; Guruprasad K; Batley B; Rapundalo S; Hill J; Blundell T; Kay J; Dunn BM Proteins; 1995 Jun; 22(2):168-81. PubMed ID: 7567964 [TBL] [Abstract][Full Text] [Related]
8. Rabbit procathepsin E and cathepsin E. Nucleotide sequence of cDNA, hydrolytic specificity for biologically active peptides and gene expression during development. Kageyama T Eur J Biochem; 1993 Sep; 216(3):717-28. PubMed ID: 8404890 [TBL] [Abstract][Full Text] [Related]
9. Comparative substrate specificity analysis of recombinant human cathepsin V and cathepsin L. Puzer L; Cotrin SS; Alves MF; Egborge T; Araújo MS; Juliano MA; Juliano L; Brömme D; Carmona AK Arch Biochem Biophys; 2004 Oct; 430(2):274-83. PubMed ID: 15369827 [TBL] [Abstract][Full Text] [Related]
10. Comparative study on specificities of rat cathepsin L and papain: amino acid differences at substrate-binding sites are involved in their specificities. Koga H; Yamada H; Nishimura Y; Kato K; Imoto T J Biochem; 1990 Dec; 108(6):976-82. PubMed ID: 2089043 [TBL] [Abstract][Full Text] [Related]
11. The novel bovine serpin endopin 2C demonstrates selective inhibition of the cysteine protease cathepsin L compared to the serine protease elastase, in cross-class inhibition. Hwang SR; Stoka V; Turk V; Hook VY Biochemistry; 2005 May; 44(21):7757-67. PubMed ID: 15909990 [TBL] [Abstract][Full Text] [Related]
12. Defining the substrate specificity of mouse cathepsin P. Puzer L; Barros NM; Oliveira V; Juliano MA; Lu G; Hassanein M; Juliano L; Mason RW; Carmona AK Arch Biochem Biophys; 2005 Mar; 435(1):190-6. PubMed ID: 15680921 [TBL] [Abstract][Full Text] [Related]
13. The specificity of bovine spleen cathepsin S. A comparison with rat liver cathepsins L and B. Brömme D; Steinert A; Friebe S; Fittkau S; Wiederanders B; Kirschke H Biochem J; 1989 Dec; 264(2):475-81. PubMed ID: 2604727 [TBL] [Abstract][Full Text] [Related]
14. Active subsite properties, subsite residues and targeting to lysosomes or midgut lumen of cathepsins L from the beetle Tenebrio molitor. Damasceno TF; Dias RO; de Oliveira JR; Salinas RK; Juliano MA; Ferreira C; Terra WR Insect Biochem Mol Biol; 2017 Oct; 89():17-30. PubMed ID: 28838758 [TBL] [Abstract][Full Text] [Related]
15. Recombinant expression and enzymatic subsite characterization of plasmepsin 4 from the four Plasmodium species infecting man. Li T; Yowell CA; Beyer BB; Hung SH; Westling J; Lam MT; Dunn BM; Dame JB Mol Biochem Parasitol; 2004 May; 135(1):101-9. PubMed ID: 15287591 [TBL] [Abstract][Full Text] [Related]
16. Probing the specificity of cysteine proteinases at subsites remote from the active site: analysis of P4, P3, P2' and P3' variations in extended substrates. Portaro FC; Santos AB; Cezari MH; Juliano MA; Juliano L; Carmona E Biochem J; 2000 Apr; 347 Pt 1(Pt 1):123-9. PubMed ID: 10727410 [TBL] [Abstract][Full Text] [Related]
17. Proteolytic specificity of chicken cathepsin L on bovine beta-casein. Dufour E; Ribadeau-Dumas B Biosci Rep; 1988 Apr; 8(2):185-91. PubMed ID: 3408813 [TBL] [Abstract][Full Text] [Related]
18. The amino acid sequences, structure comparisons and inhibition kinetics of sheep cathepsin L and sheep stefin B. Ritonja A; Coetzer TH; Pike RN; Dennison C Comp Biochem Physiol B Biochem Mol Biol; 1996 Jun; 114(2):193-8. PubMed ID: 8759291 [TBL] [Abstract][Full Text] [Related]
19. Amino acid substitutions in the N-terminal segment of cystatin C create selective protein inhibitors of lysosomal cysteine proteinases. Mason RW; Sol-Church K; Abrahamson M Biochem J; 1998 Mar; 330 ( Pt 2)(Pt 2):833-8. PubMed ID: 9480898 [TBL] [Abstract][Full Text] [Related]
20. Conserved cystatin segments as models for designing specific substrates and inhibitors of cysteine proteinases. Lalmanach G; Serveau C; Brillard-Bourdet M; Chagas JR; Mayer R; Juliano L; Gauthier F J Protein Chem; 1995 Nov; 14(8):645-53. PubMed ID: 8747425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]