These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 9377551)
21. Physical and functional interactions between the prostate suppressor homeoprotein NKX3.1 and serum response factor. Ju JH; Maeng JS; Zemedkun M; Ahronovitz N; Mack JW; Ferretti JA; Gelmann EP; Gruschus JM J Mol Biol; 2006 Jul; 360(5):989-99. PubMed ID: 16814806 [TBL] [Abstract][Full Text] [Related]
22. P53 mutations and loss of heterozygosity on chromosomes 8p, 16q, 17p, and 18q are confined to advanced prostate cancer. Massenkeil G; Oberhuber H; Hailemariam S; Sulser T; Diener PA; Bannwart F; Schäfer R; Schwarte-Waldhoff I Anticancer Res; 1994; 14(6B):2785-90. PubMed ID: 7872719 [TBL] [Abstract][Full Text] [Related]
23. The loss of NKX3.1 expression in testicular--and prostate--cancers is not caused by promoter hypermethylation. Lind GE; Skotheim RI; Fraga MF; Abeler VM; Henrique R; Saatcioglu F; Esteller M; Teixeira MR; Lothe RA Mol Cancer; 2005 Feb; 4(1):8. PubMed ID: 15691383 [TBL] [Abstract][Full Text] [Related]
24. Homozygous deletions at 8p22 and 8p21 in prostate cancer implicate these regions as the sites for candidate tumor suppressor genes. Kagan J; Stein J; Babaian RJ; Joe YS; Pisters LL; Glassman AB; von Eschenbach AC; Troncoso P Oncogene; 1995 Nov; 11(10):2121-6. PubMed ID: 7478532 [TBL] [Abstract][Full Text] [Related]
25. LAPSER1: a novel candidate tumor suppressor gene from 10q24.3. Cabeza-Arvelaiz Y; Thompson TC; Sepulveda JL; Chinault AC Oncogene; 2001 Oct; 20(46):6707-17. PubMed ID: 11709705 [TBL] [Abstract][Full Text] [Related]
26. Functional evidence for a metastasis suppressor gene for rat prostate cancer within a 60-kilobase region on human chromosome 8p21-p12. Nihei N; Kouprina N; Larionov V; Oshima J; Martin GM; Ichikawa T; Barrett JC Cancer Res; 2002 Jan; 62(2):367-70. PubMed ID: 11809681 [TBL] [Abstract][Full Text] [Related]
27. Relationship of NKX3.1 and MYC gene copy number ratio and DNA hypomethylation to prostate carcinoma stage. Kindich R; Florl AR; Kamradt J; Lehmann J; Müller M; Wullich B; Schulz WA Eur Urol; 2006 Jan; 49(1):169-75; discussion 175. PubMed ID: 16310933 [TBL] [Abstract][Full Text] [Related]
28. [Mapping of a deletion interval on 8p21-22 in prostate cancer by gene dosage PCR]. Schmidt H; Semjonow A; Csiszar K; Korsching E; Brandt B; Eltze E Verh Dtsch Ges Pathol; 2007; 91():302-7. PubMed ID: 18314628 [TBL] [Abstract][Full Text] [Related]
29. Loss-of-function of Nkx3.1 promotes increased oxidative damage in prostate carcinogenesis. Ouyang X; DeWeese TL; Nelson WG; Abate-Shen C Cancer Res; 2005 Aug; 65(15):6773-9. PubMed ID: 16061659 [TBL] [Abstract][Full Text] [Related]
30. Evidence for three tumor suppressor gene loci on chromosome 8p in human prostate cancer. Macoska JA; Trybus TM; Benson PD; Sakr WA; Grignon DJ; Wojno KD; Pietruk T; Powell IJ Cancer Res; 1995 Nov; 55(22):5390-5. PubMed ID: 7585607 [TBL] [Abstract][Full Text] [Related]
31. Nkx3.1 mutant mice recapitulate early stages of prostate carcinogenesis. Kim MJ; Bhatia-Gaur R; Banach-Petrosky WA; Desai N; Wang Y; Hayward SW; Cunha GR; Cardiff RD; Shen MM; Abate-Shen C Cancer Res; 2002 Jun; 62(11):2999-3004. PubMed ID: 12036903 [TBL] [Abstract][Full Text] [Related]
32. Allele-specific loss of heterozygosity at the DAL-1/4.1B (EPB41L3) tumor-suppressor gene locus in the absence of mutation. Kittiniyom K; Mastronardi M; Roemer M; Wells WA; Greenberg ER; Titus-Ernstoff L; Newsham IF Genes Chromosomes Cancer; 2004 Jul; 40(3):190-203. PubMed ID: 15138999 [TBL] [Abstract][Full Text] [Related]
33. An 800-kb region of deletion at 13q14 in human prostate and other carcinomas. Chen C; Frierson HF; Haggerty PF; Theodorescu D; Gregory CW; Dong JT Genomics; 2001 Oct; 77(3):135-44. PubMed ID: 11597138 [TBL] [Abstract][Full Text] [Related]
34. Analysis of NKX3.1 expression in prostate cancer tissues and correlation with clinicopathologic features. Aslan G; Irer B; Tuna B; Yorukoglu K; Saatcioglu F; Celebi I Pathol Res Pract; 2006; 202(2):93-8. PubMed ID: 16413692 [TBL] [Abstract][Full Text] [Related]
35. NKX-3.1 interacts with prostate-derived Ets factor and regulates the activity of the PSA promoter. Chen H; Nandi AK; Li X; Bieberich CJ Cancer Res; 2002 Jan; 62(2):338-40. PubMed ID: 11809674 [TBL] [Abstract][Full Text] [Related]
36. Loss of Nkx3.1 expression in the transgenic adenocarcinoma of mouse prostate model. Bethel CR; Bieberich CJ Prostate; 2007 Dec; 67(16):1740-50. PubMed ID: 17929276 [TBL] [Abstract][Full Text] [Related]
37. p53 Immunostaining guided laser capture microdissection (p53-LCM) defines the presence of p53 gene mutations in focal regions of primary prostate cancer positive for p53 protein. Griewe GL; Dean RC; Zhang W; Young D; Sesterhenn IA; Shanmugam N; McLeod DG; Moul JW; Srivastava S Prostate Cancer Prostatic Dis; 2003; 6(4):281-5. PubMed ID: 14663467 [TBL] [Abstract][Full Text] [Related]
38. Curcumin downregulates homeobox gene NKX3.1 in prostate cancer cell LNCaP. Zhang HN; Yu CX; Zhang PJ; Chen WW; Jiang AL; Kong F; Deng JT; Zhang JY; Young CY Acta Pharmacol Sin; 2007 Mar; 28(3):423-30. PubMed ID: 17303007 [TBL] [Abstract][Full Text] [Related]
39. Mutations in the androgen receptor gene are associated with progression of human prostate cancer to androgen independence. Tilley WD; Buchanan G; Hickey TE; Bentel JM Clin Cancer Res; 1996 Feb; 2(2):277-85. PubMed ID: 9816170 [TBL] [Abstract][Full Text] [Related]
40. Lymph node metastasis is associated with allelic loss on chromosome 13q12-13 in esophageal squamous cell carcinoma. Harada H; Tanaka H; Shimada Y; Shinoda M; Imamura M; Ishizaki K Cancer Res; 1999 Aug; 59(15):3724-9. PubMed ID: 10446988 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]