These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 9377715)
1. The pH-dependent tertiary structure of a designed helix-loop-helix dimer. Dolphin GT; Baltzer L Fold Des; 1997; 2(5):319-30. PubMed ID: 9377715 [TBL] [Abstract][Full Text] [Related]
2. Structure and dynamics of a designed helix-loop-helix dimer in dilute aqueous trifluoroethanol solution. A strategy for NMR spectroscopic structure determination of molten globules in the rational design of native-like proteins. Olofsson S; Baltzer L Fold Des; 1996; 1(5):347-56. PubMed ID: 9080181 [TBL] [Abstract][Full Text] [Related]
3. A designed well-folded monomeric four-helix bundle protein prepared by Fmoc solid-phase peptide synthesis and native chemical ligation. Dolphin GT Chemistry; 2006 Feb; 12(5):1436-47. PubMed ID: 16283689 [TBL] [Abstract][Full Text] [Related]
4. Control of lysine reactivity in four-helix bundle proteins by site-selective pKa depression: expanding the versatility of proteins by postsynthetic functionalization. Andersson LK; Caspersson M; Baltzer L Chemistry; 2002 Aug; 8(16):3687-97. PubMed ID: 12203296 [TBL] [Abstract][Full Text] [Related]
5. Analysis of peptide design in four-, five-, and six-helix bundle template assembled synthetic protein molecules. Seo ES; Sherman JC Biopolymers; 2007; 88(5):774-9. PubMed ID: 17554752 [TBL] [Abstract][Full Text] [Related]
6. Global topology & stability and local structure & dynamics in a synthetic spin-labeled four-helix bundle protein. Gibney BR; Johansson JS; Rabanal F; Skalicky JJ; Wand AJ; Dutton PL Biochemistry; 1997 Mar; 36(10):2798-806. PubMed ID: 9062107 [TBL] [Abstract][Full Text] [Related]
7. De novo metallonucleases based on helix-loop-helix motifs. Rossi P; Tecilla P; Baltzer L; Scrimin P Chemistry; 2004 Sep; 10(17):4163-70. PubMed ID: 15352099 [TBL] [Abstract][Full Text] [Related]
8. Structure, function, and dynamics of the dimerization and DNA-binding domain of oncogenic transcription factor v-Myc. Fieber W; Schneider ML; Matt T; Kräutler B; Konrat R; Bister K J Mol Biol; 2001 Apr; 307(5):1395-410. PubMed ID: 11292350 [TBL] [Abstract][Full Text] [Related]
9. Noncovalent binding of a reaction intermediate by a designed helix-loop-helix motif-implications for catalyst design. Allert M; Baltzer L Chembiochem; 2003 Apr; 4(4):306-18. PubMed ID: 12672110 [TBL] [Abstract][Full Text] [Related]
10. Design and NMR analyses of compact, independently folded BBA motifs. Struthers M; Ottesen JJ; Imperiali B Fold Des; 1998; 3(2):95-103. PubMed ID: 9565754 [TBL] [Abstract][Full Text] [Related]
11. Insights into the mechanism of heterodimerization from the 1H-NMR solution structure of the c-Myc-Max heterodimeric leucine zipper. Lavigne P; Crump MP; Gagné SM; Hodges RS; Kay CM; Sykes BD J Mol Biol; 1998 Aug; 281(1):165-81. PubMed ID: 9680483 [TBL] [Abstract][Full Text] [Related]
12. Effects of side-chain characteristics on stability and oligomerization state of a de novo-designed model coiled-coil: 20 amino acid substitutions in position "d". Tripet B; Wagschal K; Lavigne P; Mant CT; Hodges RS J Mol Biol; 2000 Jul; 300(2):377-402. PubMed ID: 10873472 [TBL] [Abstract][Full Text] [Related]
13. De novo backbone and sequence design of an idealized alpha/beta-barrel protein: evidence of stable tertiary structure. Offredi F; Dubail F; Kischel P; Sarinski K; Stern AS; Van de Weerdt C; Hoch JC; Prosperi C; François JM; Mayo SL; Martial JA J Mol Biol; 2003 Jan; 325(1):163-74. PubMed ID: 12473459 [TBL] [Abstract][Full Text] [Related]
14. Synthesis and conformational properties of protein fragments based on the Id family of DNA-binding and cell-differentiation inhibitors. Kiewitz SD; Cabrele C Biopolymers; 2005; 80(6):762-74. PubMed ID: 15880794 [TBL] [Abstract][Full Text] [Related]
15. A hierarchic approach to the design of hexameric helical barrels. Ghirlanda G; Lear JD; Ogihara NL; Eisenberg D; DeGrado WF J Mol Biol; 2002 May; 319(1):243-53. PubMed ID: 12051949 [TBL] [Abstract][Full Text] [Related]
16. Solution structure of a de novo helical protein by 2D-NMR spectroscopy. Kuroda Y; Nakai T; Ohkubo T J Mol Biol; 1994 Feb; 236(3):862-8. PubMed ID: 8114099 [TBL] [Abstract][Full Text] [Related]
17. The dimerization domain of HNF-1alpha: structure and plasticity of an intertwined four-helix bundle with application to diabetes mellitus. Narayana N; Hua Q; Weiss MA J Mol Biol; 2001 Jul; 310(3):635-58. PubMed ID: 11439029 [TBL] [Abstract][Full Text] [Related]
18. Site-selective control of the reactivity of surface-exposed histidine residues in designed four-helix-bundle catalysts. Broo KS; Brive L; Sott RS; Baltzer L Fold Des; 1998; 3(4):303-12. PubMed ID: 9710576 [TBL] [Abstract][Full Text] [Related]
19. Contribution of increased length and intact capping sequences to the conformational preference for helix in a 31-residue peptide from the C terminus of myohemerythrin. Reymond MT; Huo S; Duggan B; Wright PE; Dyson HJ Biochemistry; 1997 Apr; 36(17):5234-44. PubMed ID: 9136885 [TBL] [Abstract][Full Text] [Related]
20. A surface exposed O-linked galactose residue destabilises the structure of a folded helix-loop-helix dimer. Vijayalekshmi S; George SK; Andersson LK; Kihlberg J; Baltzer L Org Biomol Chem; 2003 Jul; 1(14):2455-60. PubMed ID: 12956061 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]