These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 9378567)
1. Relationship between arterial pressure and blood flow in the generation of slow-wave flowmotion in rat skeletal muscle. Erni D; Banic A; Sigurdsson GH; Wheatley AM Int J Microcirc Clin Exp; 1997; 17(4):175-83. PubMed ID: 9378567 [TBL] [Abstract][Full Text] [Related]
2. Regular slow wave flowmotion in skeletal muscle is not determined by nitric oxide and endothelin. Erni D; Sigurdsson GH; Banic A; Wheatley AM Microvasc Res; 1999 Sep; 58(2):167-76. PubMed ID: 10458932 [TBL] [Abstract][Full Text] [Related]
3. Haemorrhage during anaesthesia and surgery: continuous measurement of microcirculatory blood flow in the kidney, liver, skin and skeletal muscle. Erni D; Banic A; Wheatley AM; Sigurdsson GH Eur J Anaesthesiol; 1995 Jul; 12(4):423-9. PubMed ID: 7588673 [TBL] [Abstract][Full Text] [Related]
4. Slow-wave flowmotion in rabbit skeletal muscle after acute fixed-volume hemorrhage. Borgström P; Schmidt JA; Bruttig SP; Intaglietta M; Arfors KE Circ Shock; 1992 Jan; 36(1):57-61. PubMed ID: 1551185 [TBL] [Abstract][Full Text] [Related]
5. Local cerebral blood flow autoregulation following "asymptomatic" cerebral venous occlusion in the rat. Nakase H; Nagata K; Otsuka H; Sakaki T; Kempski O J Neurosurg; 1998 Jul; 89(1):118-24. PubMed ID: 9647182 [TBL] [Abstract][Full Text] [Related]
6. The vascular origin of slow wave flowmotion in skeletal muscle during local hypotension. Schmidt JA; Borgström P; Intaglietta M Int J Microcirc Clin Exp; 1993 Jun; 12(3):287-97. PubMed ID: 8375963 [TBL] [Abstract][Full Text] [Related]
7. Plasma lactate concentration and muscle blood flow during dynamic exercise with negative-pressure breathing. Kamijo Y; Takeno Y; Sakai A; Inaki M; Okumoto T; Itoh J; Yanagidaira Y; Masuki S; Nose H J Appl Physiol (1985); 2000 Dec; 89(6):2196-205. PubMed ID: 11090568 [TBL] [Abstract][Full Text] [Related]
8. Exogenous adenosine induces flowmotion in skeletal muscle microcirculation of the anesthetized rat. Gustafsson U; Gidlöf A; Lewis DH; Sollevi A Int J Microcirc Clin Exp; 1994; 14(5):303-7. PubMed ID: 7705992 [TBL] [Abstract][Full Text] [Related]
9. Alteration in flow (shear stress)-induced remodelling in rat resistance arteries with aging: improvement by a treatment with hydralazine. Dumont O; Pinaud F; Guihot AL; Baufreton C; Loufrani L; Henrion D Cardiovasc Res; 2008 Feb; 77(3):600-8. PubMed ID: 18006444 [TBL] [Abstract][Full Text] [Related]
10. Effect of proximal arterial perfusion pressure on function, spinal cord blood flow, and histopathologic changes after increasing intervals of aortic occlusion in the rat. Taira Y; Marsala M Stroke; 1996 Oct; 27(10):1850-8. PubMed ID: 8841344 [TBL] [Abstract][Full Text] [Related]
11. Diameter changes in skeletal muscle venules during arterial pressure reduction. Bishop JJ; Nance PR; Popel AS; Intaglietta M; Johnson PC Am J Physiol Heart Circ Physiol; 2000 Jul; 279(1):H47-57. PubMed ID: 10899040 [TBL] [Abstract][Full Text] [Related]
12. The effect of gradual or acute arterial occlusion on skeletal muscle blood flow, arteriogenesis, and inflammation in rat hindlimb ischemia. Tang GL; Chang DS; Sarkar R; Wang R; Messina LM J Vasc Surg; 2005 Feb; 41(2):312-20. PubMed ID: 15768015 [TBL] [Abstract][Full Text] [Related]
13. Angiostatin does not contribute to skeletal muscle microvascular rarefaction with low nitric oxide bioavailability. Frisbee JC; Samora JB; Basile DP Microcirculation; 2007 Feb; 14(2):145-53. PubMed ID: 17365669 [TBL] [Abstract][Full Text] [Related]
14. Role of KATP channels on modulating diaphragmatic microvascular flow during hemorrhagic hypotension. Chang HY; Chen CW; Hsiue TR; Chen CR Am J Physiol; 1997 Jan; 272(1 Pt 2):H272-8. PubMed ID: 9038947 [TBL] [Abstract][Full Text] [Related]
15. Low frequency flowmotion/(vasomotion) during patho-physiological conditions. Schmidt-Lucke C; Borgström P; Schmidt-Lucke JA Life Sci; 2002 Oct; 71(23):2713-28. PubMed ID: 12383879 [TBL] [Abstract][Full Text] [Related]
16. Effects of haemorrhagic hypotension on the subcapsular artery and microvasculature of the rat testis. Lissbrant E; Collin O; Damber JE; Bergh A Int J Androl; 2006 Jun; 29(3):434-40. PubMed ID: 16524367 [TBL] [Abstract][Full Text] [Related]
17. Dissociation between volume blood flow and laser-Doppler signal from rat muscle during changes in vascular tone. Kuznetsova LV; Tomasek N; Sigurdsson GH; Banic A; Erni D; Wheatley AM Am J Physiol; 1998 Apr; 274(4):H1248-54. PubMed ID: 9575928 [TBL] [Abstract][Full Text] [Related]
18. Changes in plasma catecholamines and plasma renin activity during hypotension in conscious rats with lesions of the nucleus tractus solitarii. Hubbard JW; Buchholz RA; Reed K; Nathan MA; Keeton TK J Auton Nerv Syst; 1988 Mar; 22(2):97-106. PubMed ID: 3288690 [TBL] [Abstract][Full Text] [Related]
19. Detecting arterial and venous obstruction in flaps. Svensson H; Svedman P; Holmberg J; Jacobsson S Ann Plast Surg; 1985 Jan; 14(1):20-3. PubMed ID: 3156550 [TBL] [Abstract][Full Text] [Related]
20. Proximal and distal pulse pressure after acute antihypertensive vasodilating drugs in Wistar-Kyoto and spontaneously hypertensive rats. Tsoucaris D; Benetos A; Legrand M; London GM; Safar ME J Hypertens; 1995 Feb; 13(2):243-9. PubMed ID: 7615955 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]