These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 9378592)

  • 1. Skill learning.
    Doyon J
    Int Rev Neurobiol; 1997; 41():273-94. PubMed ID: 9378592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain activation during execution and motor imagery of novel and skilled sequential hand movements.
    Lacourse MG; Orr EL; Cramer SC; Cohen MJ
    Neuroimage; 2005 Sep; 27(3):505-19. PubMed ID: 16046149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the cerebellum in implicit motor skill learning: a PET study.
    Matsumura M; Sadato N; Kochiyama T; Nakamura S; Naito E; Matsunami K; Kawashima R; Fukuda H; Yonekura Y
    Brain Res Bull; 2004 Jul; 63(6):471-83. PubMed ID: 15249112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The multifaceted nature of the relationship between performance and brain activity in motor sequence learning.
    Orban P; Peigneux P; Lungu O; Albouy G; Breton E; Laberenne F; Benali H; Maquet P; Doyon J
    Neuroimage; 2010 Jan; 49(1):694-702. PubMed ID: 19732838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Executive function and motor skill learning.
    Hallett M; Grafman J
    Int Rev Neurobiol; 1997; 41():297-323. PubMed ID: 9378593
    [No Abstract]   [Full Text] [Related]  

  • 6. Cerebellum activation associated with performance change but not motor learning.
    Seidler RD; Purushotham A; Kim SG; Uğurbil K; Willingham D; Ashe J
    Science; 2002 Jun; 296(5575):2043-6. PubMed ID: 12065841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct connectivity profiles predict different in-time processes of motor skill learning.
    Baldassarre A; Filardi MS; Spadone S; Penna SD; Committeri G
    Neuroimage; 2021 Sep; 238():118239. PubMed ID: 34119637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning.
    Doyon J; Penhune V; Ungerleider LG
    Neuropsychologia; 2003; 41(3):252-62. PubMed ID: 12457751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor learning in man: a positron emission tomographic study.
    Seitz RJ; Roland E; Bohm C; Greitz T; Stone-Elander S
    Neuroreport; 1990 Sep; 1(1):57-60. PubMed ID: 2129858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional anatomy of visuomotor skill learning in human subjects examined with positron emission tomography.
    Doyon J; Owen AM; Petrides M; Sziklas V; Evans AC
    Eur J Neurosci; 1996 Apr; 8(4):637-48. PubMed ID: 9081615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deconstructing skill learning and its physiological mechanisms.
    Spampinato D; Celnik P
    Cortex; 2018 Jul; 104():90-102. PubMed ID: 29775838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain representations for acquiring and recalling visual-motor adaptations.
    Bédard P; Sanes JN
    Neuroimage; 2014 Nov; 101():225-35. PubMed ID: 25019676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroanatomical correlates of motor acquisition and motor transfer.
    Seidler RD; Noll DC
    J Neurophysiol; 2008 Apr; 99(4):1836-45. PubMed ID: 18272874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acquisition of a new bimanual coordination pattern modulates the cerebral activations elicited by an intrinsic pattern: an fMRI study.
    Rémy F; Wenderoth N; Lipkens K; Swinnen SP
    Cortex; 2008 May; 44(5):482-93. PubMed ID: 18387582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebellum and M1 interaction during early learning of timed motor sequences.
    Penhune VB; Doyon J
    Neuroimage; 2005 Jul; 26(3):801-12. PubMed ID: 15955490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: an fMRI study of autism.
    Allen G; Courchesne E
    Am J Psychiatry; 2003 Feb; 160(2):262-73. PubMed ID: 12562572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. fMRI investigation of cortical and subcortical networks in the learning of abstract and effector-specific representations of motor sequences.
    Bapi RS; Miyapuram KP; Graydon FX; Doya K
    Neuroimage; 2006 Aug; 32(2):714-27. PubMed ID: 16798015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional cerebral reorganization following motor sequence learning through mental practice with motor imagery.
    Jackson PL; Lafleur MF; Malouin F; Richards CL; Doyon J
    Neuroimage; 2003 Oct; 20(2):1171-80. PubMed ID: 14568486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor practice and neurophysiological adaptation in the cerebellum: a positron tomography study.
    Friston KJ; Frith CD; Passingham RE; Liddle PF; Frackowiak RS
    Proc Biol Sci; 1992 Jun; 248(1323):223-8. PubMed ID: 1354360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic cortical and subcortical networks in learning and delayed recall of timed motor sequences.
    Penhune VB; Doyon J
    J Neurosci; 2002 Feb; 22(4):1397-406. PubMed ID: 11850466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.