BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 9378714)

  • 1. Effects of pH, temperature, and alcohols on the remarkable activation of thermolysin by salts.
    Inouye K; Lee SB; Nambu K; Tonomura B
    J Biochem; 1997 Aug; 122(2):358-64. PubMed ID: 9378714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of amino acid residues at the cleavable site of substrates on the remarkable activation of thermolysin by salts.
    Inouye K; Lee SB; Tonomura B
    Biochem J; 1996 Apr; 315 ( Pt 1)(Pt 1):133-8. PubMed ID: 8670097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of cobalt-substitution of the active zinc ion in thermolysin on its activity and active-site microenvironment.
    Kuzuya K; Inouye K
    J Biochem; 2001 Dec; 130(6):783-8. PubMed ID: 11726278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of mutations of thermolysin, as N116 to asp and asp150 to glu, on salt-induced activation and stabilization.
    Menach E; Yasukawa K; Inouye K
    Biosci Biotechnol Biochem; 2013; 77(4):741-6. PubMed ID: 23563542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of salts on the solubility of thermolysin: a remarkable increase in the solubility as well as the activity by the addition of salts without aggregation or dispersion of thermolysin.
    Inouye K; Kuzuya K; Tonomura B
    J Biochem; 1998 May; 123(5):847-52. PubMed ID: 9562615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of salts on thermolysin: activation of hydrolysis and synthesis of N-carbobenzoxy-L-aspartyl-L-phenylalanine methyl ester, and a unique change in the absorption spectrum of thermolysin.
    Inouye K
    J Biochem; 1992 Sep; 112(3):335-40. PubMed ID: 1429520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of site-directed mutagenesis of the surface residues Gln128 and Gln225 of thermolysin on its catalytic activity.
    Tatsumi C; Hashida Y; Yasukawa K; Inouye K
    J Biochem; 2007 Jun; 141(6):835-42. PubMed ID: 17405799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of nitration and amination of tyrosyl residues in thermolysin on its hydrolytic activity and its remarkable activation by salts.
    Inouye K; Lee SB; Tonomura B
    J Biochem; 1998 Jul; 124(1):72-8. PubMed ID: 9644248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium chloride enhances markedly the thermal stability of thermolysin as well as its catalytic activity.
    Inouye K; Kuzuya K; Tonomura B
    Biochim Biophys Acta; 1998 Oct; 1388(1):209-14. PubMed ID: 9774734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the mutational combinations on the activity and stability of thermolysin.
    Kusano M; Yasukawa K; Inouye K
    J Biotechnol; 2010 May; 147(1):7-16. PubMed ID: 20214932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic analysis of the activation-and-inhibition dual effects of cobalt ion on thermolysin activity.
    Hashida Y; Inouye K
    J Biochem; 2007 Jun; 141(6):843-53. PubMed ID: 17405798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory effects of alcohols on thermolysin activity as examined using a fluorescent substrate.
    Muta Y; Inouye K
    J Biochem; 2002 Dec; 132(6):945-51. PubMed ID: 12473197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of salts on the interaction of 8-anilinonaphthalene 1-sulphonate and thermolysin.
    Samukange V; Kamo M; Yasukawa K; Inouye K
    Biosci Biotechnol Biochem; 2014; 78(9):1522-8. PubMed ID: 25209499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of site-directed mutagenesis of the loop residue of the N-terminal domain Gly117 of thermolysin on its catalytic activity.
    Menach E; Yasukawa K; Inouye K
    Biosci Biotechnol Biochem; 2010; 74(12):2457-62. PubMed ID: 21150094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of site-directed mutagenesis of Asn116 in the β-hairpin of the N-terminal domain of thermolysin on its activity and stability.
    Menach E; Yasukawa K; Inouye K
    J Biochem; 2012 Sep; 152(3):231-9. PubMed ID: 22648563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of introducing negative charges into the molecular surface of thermolysin by site-directed mutagenesis on its activity and stability.
    Takita T; Aono T; Sakurama H; Itoh T; Wada T; Minoda M; Yasukawa K; Inouye K
    Biochim Biophys Acta; 2008 Mar; 1784(3):481-8. PubMed ID: 18187054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of Val 315 located in the C-terminal region of thermolysin in its expression in Escherichia coli and its thermal stability.
    Kojima K; Nakata H; Inouye K
    Biochim Biophys Acta; 2014 Feb; 1844(2):330-8. PubMed ID: 24192395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of the pH-dependence of thermolysin activity as examined by site-directed mutagenesis of Asn112 located at the active site of thermolysin.
    Kusano M; Yasukawa K; Hashida Y; Inouye K
    J Biochem; 2006 Jun; 139(6):1017-23. PubMed ID: 16788052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the activity and stability of thermolysin by site-directed mutagenesis.
    Yasukawa K; Inouye K
    Biochim Biophys Acta; 2007 Oct; 1774(10):1281-8. PubMed ID: 17869197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of neutral salts and alcohols on the activity of Streptomyces caespitosus neutral protease.
    Inouye K; Shimada T; Yasukawa K
    J Biochem; 2007 Sep; 142(3):317-24. PubMed ID: 17646180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.