BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 9379171)

  • 21. Hydrophobic substitution mutations in the S4 sequence alter voltage-dependent gating in Shaker K+ channels.
    Lopez GA; Jan YN; Jan LY
    Neuron; 1991 Aug; 7(2):327-36. PubMed ID: 1873032
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation and inactivation of the voltage-gated sodium channel: role of segment S5 revealed by a novel hyperkalaemic periodic paralysis mutation.
    Bendahhou S; Cummins TR; Tawil R; Waxman SG; Ptácek LJ
    J Neurosci; 1999 Jun; 19(12):4762-71. PubMed ID: 10366610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of the S3-S4 linker in Shaker potassium channel activation.
    Mathur R; Zheng J; Yan Y; Sigworth FJ
    J Gen Physiol; 1997 Feb; 109(2):191-9. PubMed ID: 9041448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interaction between the sodium channel inactivation linker and domain III S4-S5.
    Smith MR; Goldin AL
    Biophys J; 1997 Oct; 73(4):1885-95. PubMed ID: 9336184
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Amino terminal-dependent gating of the potassium channel rat eag is compensated by a mutation in the S4 segment.
    Terlau H; Heinemann SH; Stühmer W; Pongs O; Ludwig J
    J Physiol; 1997 Aug; 502 ( Pt 3)(Pt 3):537-43. PubMed ID: 9279806
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single-channel analysis of inactivation-defective rat skeletal muscle sodium channels containing the F1304Q mutation.
    Lawrence JH; Orias DW; Balser JR; Nuss HB; Tomaselli GF; O'Rourke B; Marban E
    Biophys J; 1996 Sep; 71(3):1285-94. PubMed ID: 8874003
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human sodium channel gating defects caused by missense mutations in S6 segments associated with myotonia: S804F and V1293I.
    Green DS; George AL; Cannon SC
    J Physiol; 1998 Aug; 510 ( Pt 3)(Pt 3):685-94. PubMed ID: 9660885
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetic mode switch of rat brain IIA Na channels in Xenopus oocytes excised macropatches.
    Fleig A; Ruben PC; Rayner MD
    Pflugers Arch; 1994 Jul; 427(5-6):399-405. PubMed ID: 7971138
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Charge immobilization of skeletal muscle Na+ channels: role of residues in the inactivation linker.
    Groome JR; Dice MC; Fujimoto E; Ruben PC
    Biophys J; 2007 Sep; 93(5):1519-33. PubMed ID: 17513361
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A voltage-dependent gating transition induces use-dependent block by tetrodotoxin of rat IIA sodium channels expressed in Xenopus oocytes.
    Patton DE; Goldin AL
    Neuron; 1991 Oct; 7(4):637-47. PubMed ID: 1657057
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Insertion mutations of the RIIA Na+ channel reveal novel features of voltage gating and protein kinase A modulation.
    Hebert TE; Monette R; Stone JC; Drapeau P; Dunn RJ
    Pflugers Arch; 1994 Jul; 427(5-6):500-9. PubMed ID: 7971148
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Voltage-dependent sodium channel function is regulated through membrane mechanics.
    Shcherbatko A; Ono F; Mandel G; Brehm P
    Biophys J; 1999 Oct; 77(4):1945-59. PubMed ID: 10512815
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effective gating charges per channel in voltage-dependent K+ and Ca2+ channels.
    Noceti F; Baldelli P; Wei X; Qin N; Toro L; Birnbaumer L; Stefani E
    J Gen Physiol; 1996 Sep; 108(3):143-55. PubMed ID: 8882860
    [TBL] [Abstract][Full Text] [Related]  

  • 34. More gating charges are needed to open a Shaker K+ channel than are needed to open an rBIIA Na+ channel.
    Gamal El-Din TM; Grögler D; Lehmann C; Heldstab H; Greeff NG
    Biophys J; 2008 Aug; 95(3):1165-75. PubMed ID: 18390620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Voltage sensor-trapping: enhanced activation of sodium channels by beta-scorpion toxin bound to the S3-S4 loop in domain II.
    Cestèle S; Qu Y; Rogers JC; Rochat H; Scheuer T; Catterall WA
    Neuron; 1998 Oct; 21(4):919-31. PubMed ID: 9808476
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evidence for voltage-dependent S4 movement in sodium channels.
    Yang N; Horn R
    Neuron; 1995 Jul; 15(1):213-8. PubMed ID: 7619524
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional analysis of the rat I sodium channel in xenopus oocytes.
    Smith RD; Goldin AL
    J Neurosci; 1998 Feb; 18(3):811-20. PubMed ID: 9437003
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Independent versus coupled inactivation in sodium channels. Role of the domain 2 S4 segment.
    Mitrovic N; George AL; Horn R
    J Gen Physiol; 1998 Mar; 111(3):451-62. PubMed ID: 9482711
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular analysis of potential hinge residues in the inactivation gate of brain type IIA Na+ channels.
    Kellenberger S; West JW; Catterall WA; Scheuer T
    J Gen Physiol; 1997 May; 109(5):607-17. PubMed ID: 9154907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of a protein region involved in permeation and gating of the voltage-gated Torpedo chloride channel ClC-0.
    Ludewig U; Jentsch TJ; Pusch M
    J Physiol; 1997 Feb; 498 ( Pt 3)(Pt 3):691-702. PubMed ID: 9051580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.