These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 9380018)

  • 1. Molecular properties of amphotericin B membrane channel: a molecular dynamics simulation.
    Baginski M; Resat H; McCammon JA
    Mol Pharmacol; 1997 Oct; 52(4):560-70. PubMed ID: 9380018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative molecular dynamics simulations of amphotericin B-cholesterol/ergosterol membrane channels.
    Baginski M; Resat H; Borowski E
    Biochim Biophys Acta; 2002 Dec; 1567(1-2):63-78. PubMed ID: 12488039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of amphotericin B membrane interaction by cholesterol and ergosterol--a molecular dynamics study.
    Czub J; Baginski M
    J Phys Chem B; 2006 Aug; 110(33):16743-53. PubMed ID: 16913814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the role of sterol in the formation of the amphotericin B channel.
    Cotero BV; Rebolledo-Antúnez S; Ortega-Blake I
    Biochim Biophys Acta; 1998 Oct; 1375(1-2):43-51. PubMed ID: 9767100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion passage pathways and thermodynamics of the amphotericin B membrane channel.
    Resat H; Baginski M
    Eur Biophys J; 2002 Jul; 31(4):294-305. PubMed ID: 12122476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational analysis of amphotericin B--cholesterol channel complex.
    Silberstein A
    J Membr Biol; 1998 Mar; 162(2):117-26. PubMed ID: 9538505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards New Insights in the Sterol/Amphotericin Nanochannels Formation: A Molecular Dynamic Simulation Study.
    Boukari K; Balme S; Janot JM; Picaud F
    J Membr Biol; 2016 Jun; 249(3):261-70. PubMed ID: 26700625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of amphotericin B derivatives with lipid membranes--a molecular dynamics study.
    Czub J; Borowski E; Baginski M
    Biochim Biophys Acta; 2007 Oct; 1768(10):2616-26. PubMed ID: 17662232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How do ionic channel properties depend on the structure of polyene antibiotic molecules?
    Kasumov KM; Borisova MP; Ermishkin LN; Potseluyev VM; Silberstein AY; Vainshtein VA
    Biochim Biophys Acta; 1979 Mar; 551(2):229-37. PubMed ID: 33709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis-enabled functional group deletions reveal key underpinnings of amphotericin B ion channel and antifungal activities.
    Palacios DS; Dailey I; Siebert DM; Wilcock BC; Burke MD
    Proc Natl Acad Sci U S A; 2011 Apr; 108(17):6733-8. PubMed ID: 21368185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-conductance cholesterol-amphotericin B channels in reconstituted lipid bilayers.
    Yilma S; Cannon-Sykora J; Samoylov A; Lo T; Liu N; Brinker CJ; Neely WC; Vodyanoy V
    Biosens Bioelectron; 2007 Feb; 22(7):1359-67. PubMed ID: 16842986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular modelling of membrane activity of amphotericin B, a polyene macrolide antifungal antibiotic.
    Baginski M; Sternal K; Czub J; Borowski E
    Acta Biochim Pol; 2005; 52(3):655-8. PubMed ID: 16086075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of Binding of Antifungal Antibiotic Amphotericin B to Lipid Membranes: An Insight from Combined Single-Membrane Imaging, Microspectroscopy, and Molecular Dynamics.
    Grela E; Wieczór M; Luchowski R; Zielinska J; Barzycka A; Grudzinski W; Nowak K; Tarkowski P; Czub J; Gruszecki WI
    Mol Pharm; 2018 Sep; 15(9):4202-4213. PubMed ID: 30081640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amphotericin B covalent dimers forming sterol-dependent ion-permeable membrane channels.
    Matsumori N; Yamaji N; Matsuoka S; Oishi T; Murata M
    J Am Chem Soc; 2002 Apr; 124(16):4180-1. PubMed ID: 11960425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Channels formed by amphotericin B covalent dimers exhibit rectification.
    Hirano M; Takeuchi Y; Matsumori N; Murata M; Ide T
    J Membr Biol; 2011 Apr; 240(3):159-64. PubMed ID: 21424544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular aspects of the interaction between amphotericin B and a phospholipid bilayer: molecular dynamics studies.
    Sternal K; Czub J; Baginski M
    J Mol Model; 2004 Jun; 10(3):223-32. PubMed ID: 15118877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microscopic electrostatic model for the amphotericin B channel.
    Bonilla-Marín M; Moreno-Bello M; Ortega-Blake I
    Biochim Biophys Acta; 1991 Jan; 1061(1):65-77. PubMed ID: 1704796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of amphotericin B and its selected derivatives with membranes: molecular modeling studies.
    Baginski M; Czub J; Sternal K
    Chem Rec; 2006; 6(6):320-32. PubMed ID: 17304519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amphotericin B channels in the bacterial membrane: role of sterol and temperature.
    Venegas B; González-Damián J; Celis H; Ortega-Blake I
    Biophys J; 2003 Oct; 85(4):2323-32. PubMed ID: 14507696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-(1-piperidinepropionyl)amphotericin B methyl ester (PAME)--a new derivative of the antifungal antibiotic amphotericin B: searching for the mechanism of its reduced toxicity.
    Hac-Wydro K; Dynarowicz-Latka P; Grzybowska J; Borowski E
    J Colloid Interface Sci; 2005 Jul; 287(2):476-84. PubMed ID: 15925613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.