BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 9380501)

  • 1. Structure-specific DNA binding by bacteriophage T5 5'-->3' exonuclease.
    Garforth SJ; Sayers JR
    Nucleic Acids Res; 1997 Oct; 25(19):3801-7. PubMed ID: 9380501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutagenesis of conserved lysine residues in bacteriophage T5 5'-3' exonuclease suggests separate mechanisms of endo-and exonucleolytic cleavage.
    Garforth SJ; Ceska TA; Suck D; Sayers JR
    Proc Natl Acad Sci U S A; 1999 Jan; 96(1):38-43. PubMed ID: 9874768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of overexpressed phage T5 D15 exonuclease. Similarities with Escherichia coli DNA polymerase I 5'-3' exonuclease.
    Sayers JR; Eckstein F
    J Biol Chem; 1990 Oct; 265(30):18311-7. PubMed ID: 2211703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A helical arch allowing single-stranded DNA to thread through T5 5'-exonuclease.
    Ceska TA; Sayers JR; Stier G; Suck D
    Nature; 1996 Jul; 382(6586):90-3. PubMed ID: 8657312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unusually wide co-factor tolerance in a metalloenzyme; divalent metal ions modulate endo-exonuclease activity in T5 exonuclease.
    Garforth SJ; Patel D; Feng M; Sayers JR
    Nucleic Acids Res; 2001 Jul; 29(13):2772-9. PubMed ID: 11433022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A single cleavage assay for T5 5'-->3' exonuclease: determination of the catalytic parameters forwild-type and mutant proteins.
    Pickering TJ; Garforth SJ; Thorpe SJ; Sayers JR; Grasby JA
    Nucleic Acids Res; 1999 Feb; 27(3):730-5. PubMed ID: 9889266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the catalytic parameters and reaction specificities of a phage and an archaeal flap endonuclease.
    Williams R; Sengerová B; Osborne S; Syson K; Ault S; Kilgour A; Chapados BR; Tainer JA; Sayers JR; Grasby JA
    J Mol Biol; 2007 Aug; 371(1):34-48. PubMed ID: 17559871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the interaction of lambda exonuclease with the ends of DNA.
    Mitsis PG; Kwagh JG
    Nucleic Acids Res; 1999 Aug; 27(15):3057-63. PubMed ID: 10454600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abasic site recognition mechanism by the Escherichia coli exonuclease III.
    Shida T; Kaneda K; Ogawa T; Sekiguchi J
    Nucleic Acids Symp Ser; 1999; (42):195-6. PubMed ID: 10780446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A single-strand specific endonuclease activity copurifies with overexpressed T5 D15 exonuclease.
    Sayers JR; Eckstein F
    Nucleic Acids Res; 1991 Aug; 19(15):4127-32. PubMed ID: 1651477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pre-steady-state kinetics of RB69 DNA polymerase and its exo domain mutants: effect of pH and thiophosphoryl linkages on 3'-5' exonuclease activity.
    Wang CX; Zakharova E; Li J; Joyce CM; Wang J; Konigsberg W
    Biochemistry; 2004 Apr; 43(13):3853-61. PubMed ID: 15049692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The recognition of DNA containing an AP site by E.coli endonuclease VI (exonuclease III).
    Shida T; Noda M; Sekiguchi J
    Nucleic Acids Symp Ser; 1995; (34):87-8. PubMed ID: 8841565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scanning mutagenesis using T4 DNA ligase and short degenerate DNA oligonucleotides containing tri-nucleotide mismatches.
    Cherepanov AV; de Vries S
    J Biochem; 2002 Jul; 132(1):143-7. PubMed ID: 12097171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA polymerization in the absence of exonucleolytic proofreading: in vivo and in vitro studies.
    Reha-Krantz LJ; Stocki S; Nonay RL; Dimayuga E; Goodrich LD; Konigsberg WH; Spicer EK
    Proc Natl Acad Sci U S A; 1991 Mar; 88(6):2417-21. PubMed ID: 2006180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and properties of the 5'-3' exonuclease D190-->a mutant of DNA polymerase I from Streptococcus pneumoniae.
    Amblar M; López P
    Eur J Biochem; 1998 Feb; 252(1):124-32. PubMed ID: 9523721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of mutations on the partitioning of DNA substrates between the polymerase and 3'-5' exonuclease sites of DNA polymerase I (Klenow fragment).
    Lam WC; Van der Schans EJ; Joyce CM; Millar DP
    Biochemistry; 1998 Feb; 37(6):1513-22. PubMed ID: 9484221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primer-terminus stabilization at the 3'-5' exonuclease active site of phi29 DNA polymerase. Involvement of two amino acid residues highly conserved in proofreading DNA polymerases.
    de Vega M; Lazaro JM; Salas M; Blanco L
    EMBO J; 1996 Mar; 15(5):1182-92. PubMed ID: 8605889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical determinants for substrate recognition and catalysis in the M. tuberculosis class II AP-endonuclease/3'-5' exonuclease III.
    Khanam T; Shukla A; Rai N; Ramachandran R
    Biochim Biophys Acta; 2015 May; 1854(5):505-16. PubMed ID: 25748880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A conserved tyrosine residue aids ternary complex formation, but not catalysis, in phage T5 flap endonuclease.
    Patel D; Tock MR; Frary E; Feng M; Pickering TJ; Grasby JA; Sayers JR
    J Mol Biol; 2002 Jul; 320(5):1025-35. PubMed ID: 12126622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct observation of DNA threading in flap endonuclease complexes.
    AlMalki FA; Flemming CS; Zhang J; Feng M; Sedelnikova SE; Ceska T; Rafferty JB; Sayers JR; Artymiuk PJ
    Nat Struct Mol Biol; 2016 Jul; 23(7):640-6. PubMed ID: 27273516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.