BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 9380514)

  • 41. Mga, a dual-specificity transcription factor that interacts with Max and contains a T-domain DNA-binding motif.
    Hurlin PJ; Steingrìmsson E; Copeland NG; Jenkins NA; Eisenman RN
    EMBO J; 1999 Dec; 18(24):7019-28. PubMed ID: 10601024
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structure, function, and dynamics of the dimerization and DNA-binding domain of oncogenic transcription factor v-Myc.
    Fieber W; Schneider ML; Matt T; Kräutler B; Konrat R; Bister K
    J Mol Biol; 2001 Apr; 307(5):1395-410. PubMed ID: 11292350
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selection of a high-affinity DNA pool for a bZip protein with an out-of-phase alignment of the basic region relative to the leucine zipper.
    Lee Y; Gurnon DG; Hollenbeck JJ; Oakley MG
    Bioorg Med Chem; 2001 Sep; 9(9):2335-9. PubMed ID: 11553473
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sequence-specific transcriptional repression by KS1, a multiple-zinc-finger-Krüppel-associated box protein.
    Gebelein B; Urrutia R
    Mol Cell Biol; 2001 Feb; 21(3):928-39. PubMed ID: 11154279
    [TBL] [Abstract][Full Text] [Related]  

  • 45. NF-1C, Sp1, and Sp3 are essential for transcription of the human gene for P450c17 (steroid 17alpha-hydroxylase/17,20 lyase) in human adrenal NCI-H295A cells.
    Lin CJ; Martens JW; Miller WL
    Mol Endocrinol; 2001 Aug; 15(8):1277-93. PubMed ID: 11463853
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nuclear factor I as a potential regulator during postembryonic organ development.
    Puzianowska-Kuznicka M; Shi YB
    J Biol Chem; 1996 Mar; 271(11):6273-82. PubMed ID: 8626421
    [TBL] [Abstract][Full Text] [Related]  

  • 47. B-ATF functions as a negative regulator of AP-1 mediated transcription and blocks cellular transformation by Ras and Fos.
    Echlin DR; Tae HJ; Mitin N; Taparowsky EJ
    Oncogene; 2000 Mar; 19(14):1752-63. PubMed ID: 10777209
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mutant analysis of protein interactions with a nuclear factor I binding site in the SL3-3 virus enhancer.
    Nilsson P; Hallberg B; Thornell A; Grundström T
    Nucleic Acids Res; 1989 Jun; 17(11):4061-75. PubMed ID: 2544855
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The basic domain/leucine zipper protein hXBP-1 preferentially binds to and transactivates CRE-like sequences containing an ACGT core.
    Clauss IM; Chu M; Zhao JL; Glimcher LH
    Nucleic Acids Res; 1996 May; 24(10):1855-64. PubMed ID: 8657566
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Expression, DNA-binding specificity and transcriptional regulation of nuclear factor 1 family proteins from rat.
    Osada S; Matsubara T; Daimon S; Terazu Y; Xu M; Nishihara T; Imagawa M
    Biochem J; 1999 Aug; 342 ( Pt 1)(Pt 1):189-98. PubMed ID: 10432316
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CREB-H: a novel mammalian transcription factor belonging to the CREB/ATF family and functioning via the box-B element with a liver-specific expression.
    Omori Y; Imai J; Watanabe M; Komatsu T; Suzuki Y; Kataoka K; Watanabe S; Tanigami A; Sugano S
    Nucleic Acids Res; 2001 May; 29(10):2154-62. PubMed ID: 11353085
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Trans-activation and DNA-binding properties of the transcription factor, Sox-18.
    Hosking BM; Muscat GE; Koopman PA; Dowhan DH; Dunn TL
    Nucleic Acids Res; 1995 Jul; 23(14):2626-8. PubMed ID: 7651823
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nuclear factor I revealed as family of promoter binding transcription activators.
    Pjanic M; Pjanic P; Schmid C; Ambrosini G; Gaussin A; Plasari G; Mazza C; Bucher P; Mermod N
    BMC Genomics; 2011 Apr; 12():181. PubMed ID: 21473784
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Determination of recognition-sequences for DNA-binding proteins by a polymerase chain reaction assisted binding site selection method (BSS) using nitrocellulose immobilized DNA binding protein.
    Nørby PL; Pallisgaard N; Pedersen FS; Jørgensen P
    Nucleic Acids Res; 1992 Dec; 20(23):6317-21. PubMed ID: 1475193
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Oligonucleotide frequency matrices addressed to recognizing functional DNA sites.
    Ponomarenko MP; Ponomarenko JV; Frolov AS; Podkolodnaya OA; Vorobyev DG; Kolchanov NA; Overton GC
    Bioinformatics; 1999; 15(7-8):631-43. PubMed ID: 10487871
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantitative profiling of protein-DNA binding on microarrays.
    Ragoussis J; Field S; Udalova IA
    Methods Mol Biol; 2006; 338():261-80. PubMed ID: 16888364
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tracking the wily transcription factor.
    Eisenstein M
    Nat Methods; 2006 May; 3(5):341. PubMed ID: 16685790
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CASTing for multicomponent DNA-binding complexes.
    Wright WE; Funk WD
    Trends Biochem Sci; 1993 Mar; 18(3):77-80. PubMed ID: 8386867
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Binding site selection analysis of protein-DNA interactions via solid phase sequencing of oligonucleotide mixtures.
    Gogos JA; Tzertzinis G; Kafatos FC
    Nucleic Acids Res; 1991 Apr; 19(7):1449-53. PubMed ID: 2027753
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Enrichment of oligonucleotide sets with transcription control signals. III: DNA from non-mammalian vertebrates.
    Scapoli C; Rodriguez-Larralde A; Volinia S; Barrai I
    Comput Appl Biosci; 1993 Dec; 9(6):647-51. PubMed ID: 8143149
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.