These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 9380759)

  • 61. Cardiac tissue slices: preparation, handling, and successful optical mapping.
    Wang K; Lee P; Mirams GR; Sarathchandra P; Borg TK; Gavaghan DJ; Kohl P; Bollensdorff C
    Am J Physiol Heart Circ Physiol; 2015 May; 308(9):H1112-25. PubMed ID: 25595366
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Reciprocal dihydropyridine and ryanodine receptor interactions in skeletal muscle activation.
    Huang CL; Pedersen TH; Fraser JA
    J Muscle Res Cell Motil; 2011 Nov; 32(3):171-202. PubMed ID: 21993921
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A reappraisal of the Ca2+ dependence of fast inactivation of Ca2+ release in frog skeletal muscle.
    Olivera JF; Pizarro G
    J Muscle Res Cell Motil; 2010 Aug; 31(2):81-92. PubMed ID: 20544260
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Simultaneous recording of intramembrane charge movement components and calcium release in wild-type and S100A1-/- muscle fibres.
    Prosser BL; Hernández-Ochoa EO; Zimmer DB; Schneider MF
    J Physiol; 2009 Sep; 587(Pt 18):4543-59. PubMed ID: 19651766
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The role of ryanodine receptors and consequences of their alterations during cardiac insufficiency.
    Vassort G; Lacampagne A
    Exp Clin Cardiol; 2005; 10(3):196-9. PubMed ID: 19641687
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Calcium-dependent inactivation terminates calcium release in skeletal muscle of amphibians.
    Ríos E; Zhou J; Brum G; Launikonis BS; Stern MD
    J Gen Physiol; 2008 Apr; 131(4):335-48. PubMed ID: 18347079
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Indirect coupling between Cav1.2 channels and ryanodine receptors to generate Ca2+ sparks in murine arterial smooth muscle cells.
    Essin K; Welling A; Hofmann F; Luft FC; Gollasch M; Moosmang S
    J Physiol; 2007 Oct; 584(Pt 1):205-19. PubMed ID: 17673505
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Alterations in the calcium homeostasis of skeletal muscle from postmyocardial infarcted rats.
    Szigeti GP; Almássy J; Sztretye M; Dienes B; Szabó L; Szentesi P; Vassort G; Sárközi S; Csernoch L; Jóna I
    Pflugers Arch; 2007 Dec; 455(3):541-53. PubMed ID: 17558517
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Sparks and embers of skeletal muscle: the exciting events of contractile activation.
    Csernoch L
    Pflugers Arch; 2007 Sep; 454(6):869-78. PubMed ID: 17342530
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Role of calsequestrin evaluated from changes in free and total calcium concentrations in the sarcoplasmic reticulum of frog cut skeletal muscle fibres.
    Pape PC; Fénelon K; Lamboley CR; Stachura D
    J Physiol; 2007 May; 581(Pt 1):319-67. PubMed ID: 17331996
    [TBL] [Abstract][Full Text] [Related]  

  • 71. When sparks get old.
    Melzer W
    J Cell Biol; 2006 Aug; 174(5):613-4. PubMed ID: 16943178
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The elementary events of Ca2+ release elicited by membrane depolarization in mammalian muscle.
    Csernoch L; Zhou J; Stern MD; Brum G; Ríos E
    J Physiol; 2004 May; 557(Pt 1):43-58. PubMed ID: 14990680
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Voltage-dependent Ca2+ fluxes in skeletal myotubes determined using a removal model analysis.
    Schuhmeier RP; Melzer W
    J Gen Physiol; 2004 Jan; 123(1):33-51. PubMed ID: 14676283
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Differential effects of voltage-dependent inactivation and local anesthetics on kinetic phases of Ca2+ release in frog skeletal muscle.
    Brum G; Piriz N; DeArmas R; Rios E; Stern M; Pizarro G
    Biophys J; 2003 Jul; 85(1):245-54. PubMed ID: 12829480
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Simulation of calcium sparks in cut skeletal muscle fibers of the frog.
    Chandler WK; Hollingworth S; Baylor SM
    J Gen Physiol; 2003 Apr; 121(4):311-24. PubMed ID: 12642597
    [TBL] [Abstract][Full Text] [Related]  

  • 76. PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure.
    Reiken S; Lacampagne A; Zhou H; Kherani A; Lehnart SE; Ward C; Huang F; Gaburjakova M; Gaburjakova J; Rosemblit N; Warren MS; He KL; Yi GH; Wang J; Burkhoff D; Vassort G; Marks AR
    J Cell Biol; 2003 Mar; 160(6):919-28. PubMed ID: 12629052
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Extra activation component of calcium release in frog muscle fibres.
    Pape PC; Fénelon K; Carrier N
    J Physiol; 2002 Aug; 542(Pt 3):867-86. PubMed ID: 12154185
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Spontaneous transient outward currents arise from microdomains where BK channels are exposed to a mean Ca(2+) concentration on the order of 10 microM during a Ca(2+) spark.
    Zhuge R; Fogarty KE; Tuft RA; Walsh JV
    J Gen Physiol; 2002 Jul; 120(1):15-27. PubMed ID: 12084772
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Calcium release and intramembranous charge movement in frog skeletal muscle fibres with reduced (< 250 microM) calcium content.
    Pape PC; Carrier N
    J Physiol; 2002 Feb; 539(Pt 1):253-66. PubMed ID: 11850517
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Effects of ryanodine on calcium sparks in cut twitch fibres of Rana temporaria.
    Hui CS; Bidasee KR; Besch HR
    J Physiol; 2001 Jul; 534(Pt. 2):327-42. PubMed ID: 11454954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.