These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 9381777)

  • 21. Inhibitory actions of the gamma-aminobutyric acid in pediatric Sturge-Weber syndrome.
    Tyzio R; Khalilov I; Represa A; Crepel V; Zilberter Y; Rheims S; Aniksztejn L; Cossart R; Nardou R; Mukhtarov M; Minlebaev M; Epsztein J; Milh M; Becq H; Jorquera I; Bulteau C; Fohlen M; Oliver V; Dulac O; Dorfmüller G; Delalande O; Ben-Ari Y; Khazipov R
    Ann Neurol; 2009 Aug; 66(2):209-18. PubMed ID: 19743469
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Remodeling of extracellular matrix and epileptogenesis.
    Dityatev A
    Epilepsia; 2010 Jul; 51 Suppl 3():61-5. PubMed ID: 20618403
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kindling and status epilepticus models of epilepsy: rewiring the brain.
    Morimoto K; Fahnestock M; Racine RJ
    Prog Neurobiol; 2004 May; 73(1):1-60. PubMed ID: 15193778
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations.
    Ben-Ari Y; Gaiarsa JL; Tyzio R; Khazipov R
    Physiol Rev; 2007 Oct; 87(4):1215-84. PubMed ID: 17928584
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Models of epileptogenesis in adult animals available for antiepileptogenesis drug screening.
    Dichter MA
    Epilepsy Res; 2006 Jan; 68(1):31-5. PubMed ID: 16377136
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The impact of chronic network hyperexcitability on developing glutamatergic synapses.
    Swann JW; Le JT; Lam TT; Owens J; Mayer AT
    Eur J Neurosci; 2007 Aug; 26(4):975-91. PubMed ID: 17714191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GluR- and TrkB-mediated maturation of GABA receptor function during the period of eye opening.
    Henneberger C; Jüttner R; Schmidt SA; Walter J; Meier JC; Rothe T; Grantyn R
    Eur J Neurosci; 2005 Jan; 21(2):431-40. PubMed ID: 15673442
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Altered kinetics and benzodiazepine sensitivity of a GABAA receptor subunit mutation [gamma 2(R43Q)] found in human epilepsy.
    Bowser DN; Wagner DA; Czajkowski C; Cromer BA; Parker MW; Wallace RH; Harkin LA; Mulley JC; Marini C; Berkovic SF; Williams DA; Jones MV; Petrou S
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):15170-5. PubMed ID: 12415111
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pedunculopontine neurons are involved in network changes in the kindling model of temporal lobe epilepsy.
    Nolte MW; Löscher W; Gernert M
    Neurobiol Dis; 2006 Jul; 23(1):206-18. PubMed ID: 16682212
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [A focus and pathologically tuned circuit in pathogenesis of epilepsy].
    Trabka W
    Pol Tyg Lek; 1994 Jan 24-31; 49(4-5):66-9. PubMed ID: 8029143
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Excitatory neurotransmission in alcoholism].
    Bleich S; Sperling W; Wiltfang J; Maler JM; Kornhuber J
    Fortschr Neurol Psychiatr; 2003 Jul; 71 Suppl 1():S36-44. PubMed ID: 12947542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of excitatory amino acids in developmental epilepsies.
    Raol YH; Lynch DR; Brooks-Kayal AR
    Ment Retard Dev Disabil Res Rev; 2001; 7(4):254-60. PubMed ID: 11754519
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms that might underlie progression of the epilepsies and how to potentially alter them.
    Carmant L
    Adv Neurol; 2006; 97():305-14. PubMed ID: 16383139
    [No Abstract]   [Full Text] [Related]  

  • 34. Lamina-specific changes in hippocampal GABA(A)/cBZR and mossy fibre sprouting during and following amygdala kindling in the rat.
    Liu DS; O'Brien TJ; Williams DA; Hicks RJ; Myers DE
    Neurobiol Dis; 2009 Sep; 35(3):337-47. PubMed ID: 19465129
    [TBL] [Abstract][Full Text] [Related]  

  • 35. New insight on the mechanisms of epileptogenesis in the developing brain.
    Kubova H; Lukasiuk K; Pitkänen A
    Adv Tech Stand Neurosurg; 2012; 39():3-44. PubMed ID: 23250835
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multipotent progenitor cells from the adult human brain: neurophysiological differentiation to mature neurons.
    Moe MC; Varghese M; Danilov AI; Westerlund U; Ramm-Pettersen J; Brundin L; Svensson M; Berg-Johnsen J; Langmoen IA
    Brain; 2005 Sep; 128(Pt 9):2189-99. PubMed ID: 15958504
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental evidence contrasting the concept of progressive epileptogenesis.
    Fariello RG
    Epilepsy Res Suppl; 1996; 12():3-8. PubMed ID: 9302498
    [No Abstract]   [Full Text] [Related]  

  • 38. [Glutamate--a transmitter in the tensionfield between toxin and trophine].
    Römer KD; Bleich S; Kornhuber J
    Fortschr Neurol Psychiatr; 2003 Jul; 71 Suppl 1():S3-9. PubMed ID: 12947537
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of intracellular calcium in early neural cells by non-NMDA ionotropic glutamate receptors.
    Bardoul M; Drain MJ; Konig N
    Perspect Dev Neurobiol; 1998; 5(4):353-71. PubMed ID: 10533525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Histone methylation at gene promoters is associated with developmental regulation and region-specific expression of ionotropic and metabotropic glutamate receptors in human brain.
    Stadler F; Kolb G; Rubusch L; Baker SP; Jones EG; Akbarian S
    J Neurochem; 2005 Jul; 94(2):324-36. PubMed ID: 15998284
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.