These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 9381804)

  • 21. Open-field behaviors and water-maze learning in the F substrain of Ihara epileptic rats.
    Okaichi Y; Amano S; Ihara N; Hayase Y; Tazumi T; Okaichi H
    Epilepsia; 2006 Jan; 47(1):55-63. PubMed ID: 16417532
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Screen for genes in periaqueductal grey of male Wistar rats related to reduced exploratory activity in the elevated plus-maze.
    Nelovkov A; Sütt S; Raud S; Vasar E; Kõks S
    Behav Brain Res; 2007 Oct; 183(1):8-17. PubMed ID: 17628711
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Complex magnetic fields enable static magnetic field cue use for rats in radial maze tasks.
    McKay BE; Persinger MA
    Int J Neurosci; 2005 May; 115(5):625-48. PubMed ID: 15823929
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of pair-housing after social defeat experience on elevated plus-maze behavior in rats.
    Nakayasu T; Ishii K
    Behav Processes; 2008 Jul; 78(3):477-80. PubMed ID: 18358638
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibitory avoidance, pain reactivity, and plus-maze behavior in Wistar rats with high versus low rearing activity.
    Borta A; Schwarting RK
    Physiol Behav; 2005 Mar; 84(3):387-96. PubMed ID: 15763576
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bidirectional changes in water-maze learning following recombinant adenovirus-associated viral vector (rAAV)-mediated brain-derived neurotrophic factor expression in the rat hippocampus.
    Pietropaolo S; Paterna JC; Büeler H; Feldon J; Yee BK
    Behav Pharmacol; 2007 Sep; 18(5-6):533-47. PubMed ID: 17762522
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of photoperiod regimen on emotional behaviour in two tests for anxiolytic activity in Wistar rat.
    Benabid N; Mesfioui A; Ouichou A
    Brain Res Bull; 2008 Jan; 75(1):53-9. PubMed ID: 18158095
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Behavioral and cognitive profile of mice with high and low exploratory phenotypes.
    Kazlauckas V; Schuh J; Dall'Igna OP; Pereira GS; Bonan CD; Lara DR
    Behav Brain Res; 2005 Jul; 162(2):272-8. PubMed ID: 15970221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential effects of tumor necrosis factor-alpha co-administered with amyloid beta-peptide (25-35) on memory function and hippocampal damage in rat.
    Stepanichev M; Zdobnova I; Zarubenko I; Lazareva N; Gulyaeva NV
    Behav Brain Res; 2006 Dec; 175(2):352-61. PubMed ID: 17070605
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Long-term individual housing in C57BL/6J and DBA/2 mice: assessment of behavioral consequences.
    Võikar V; Polus A; Vasar E; Rauvala H
    Genes Brain Behav; 2005 Jun; 4(4):240-52. PubMed ID: 15924556
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploratory behaviour of rats in the elevated plus-maze is differentially sensitive to inactivation of the basolateral and central amygdaloid nuclei.
    Moreira CM; Masson S; Carvalho MC; Brandão ML
    Brain Res Bull; 2007 Mar; 71(5):466-74. PubMed ID: 17259015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The learning characteristics of rats under free-choice conditions].
    Nikol'skaia KA; Khonicheva NM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1999; 49(3):436-45. PubMed ID: 10420555
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatial memory deficits in middle-aged mice correlate with lower exploratory activity and a subordinate status: role of hippocampal neurotrophins.
    Francia N; Cirulli F; Chiarotti F; Antonelli A; Aloe L; Alleva E
    Eur J Neurosci; 2006 Feb; 23(3):711-28. PubMed ID: 16487153
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Medial septum lesions disrupt exploratory trip organization: evidence for septohippocampal involvement in dead reckoning.
    Martin MM; Horn KL; Kusman KJ; Wallace DG
    Physiol Behav; 2007 Feb; 90(2-3):412-24. PubMed ID: 17126862
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of behavioral asymmetries in the elevated plus-maze and in the T-maze.
    Schwarting RK; Borta A
    J Neurosci Methods; 2005 Feb; 141(2):251-60. PubMed ID: 15661307
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Individual responses to novelty are associated with differences in behavioral and neurochemical profiles.
    Antoniou K; Papathanasiou G; Papalexi E; Hyphantis T; Nomikos GG; Spyraki C; Papadopoulou-Daifoti Z
    Behav Brain Res; 2008 Mar; 187(2):462-72. PubMed ID: 18036673
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Anxiogenic effect of chronic exposure to extremely low frequency magnetic field in adult rats.
    Liu T; Wang S; He L; Ye K
    Neurosci Lett; 2008 Mar; 434(1):12-7. PubMed ID: 18258364
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cholecystokinin-induced anxiety in rats: relevance of pre-experimental stress and seasonal variations.
    Kõks S; Männistö PT; Bourin M; Shlik J; Vasar V; Vasar E
    J Psychiatry Neurosci; 2000 Jan; 25(1):33-42. PubMed ID: 10721682
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of ibotenate pedunculopontine tegmental nucleus lesions on exploratory behaviour in the open field.
    Steiniger B; Kretschmer BD
    Behav Brain Res; 2004 May; 151(1-2):17-23. PubMed ID: 15084417
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [The formation of a functional system of social exploration in the early postnatal period in rat development].
    Aleksandrova EA; Zaraĭskaia IIu; Shvyrkova NA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1997; 47(6):987-93. PubMed ID: 9472163
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.