These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 9382087)

  • 41. Role of DNA replication proteins in double-strand break-induced recombination in Saccharomyces cerevisiae.
    Wang X; Ira G; Tercero JA; Holmes AM; Diffley JF; Haber JE
    Mol Cell Biol; 2004 Aug; 24(16):6891-9. PubMed ID: 15282291
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Roles of Saccharomyces cerevisiae RAD17 and CHK1 checkpoint genes in the repair of double-strand breaks in cycling cells.
    Bracesco N; Candreva EC; Keszenman D; Sánchez AG; Soria S; Dell M; Siede W; Nunes E
    Radiat Environ Biophys; 2007 Nov; 46(4):401-7. PubMed ID: 17624540
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Independent and sequential recruitment of NHEJ and HR factors to DNA damage sites in mammalian cells.
    Kim JS; Krasieva TB; Kurumizaka H; Chen DJ; Taylor AM; Yokomori K
    J Cell Biol; 2005 Aug; 170(3):341-7. PubMed ID: 16061690
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Repair of dual-stranded DNA in Saccharomyces cerevisiae cells: homolog-dependent ligation and role of the RAD55 gene].
    Glazunov AV; Glazer VM
    Genetika; 2000 Dec; 36(12):1629-33. PubMed ID: 11190470
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination.
    Sugawara N; Pâques F; Colaiácovo M; Haber JE
    Proc Natl Acad Sci U S A; 1997 Aug; 94(17):9214-9. PubMed ID: 9256462
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Proteasome inhibition enhances resistance to DNA damage via upregulation of Rpn4-dependent DNA repair genes.
    Karpov DS; Spasskaya DS; Tutyaeva VV; Mironov AS; Karpov VL
    FEBS Lett; 2013 Sep; 587(18):3108-14. PubMed ID: 23954292
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The complex matter of DNA double-strand break detection.
    Bradbury JM; Jackson SP
    Biochem Soc Trans; 2003 Feb; 31(Pt 1):40-4. PubMed ID: 12546650
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cell cycle-dependent protein expression of mammalian homologs of yeast DNA double-strand break repair genes Rad51 and Rad52.
    Chen F; Nastasi A; Shen Z; Brenneman M; Crissman H; Chen DJ
    Mutat Res; 1997 Sep; 384(3):205-11. PubMed ID: 9330616
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle.
    Aylon Y; Liefshitz B; Kupiec M
    EMBO J; 2004 Dec; 23(24):4868-75. PubMed ID: 15549137
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cell cycle checkpoints, DNA repair and DNA replication strategies.
    Downes CS; Wilkins AS
    Bioessays; 1994 Jan; 16(1):75-9. PubMed ID: 8141808
    [No Abstract]   [Full Text] [Related]  

  • 51. The Saccharomyces cerevisiae PDS1 and RAD9 checkpoint genes control different DNA double-strand break repair pathways.
    DeMase D; Zeng L; Cera C; Fasullo M
    DNA Repair (Amst); 2005 Jan; 4(1):59-69. PubMed ID: 15533838
    [TBL] [Abstract][Full Text] [Related]  

  • 52. V(D)J recombination and double-strand break repair.
    Weaver DT
    Adv Immunol; 1995; 58():29-85. PubMed ID: 7741029
    [No Abstract]   [Full Text] [Related]  

  • 53. The Sir proteins of Saccharomyces cerevisiae: mediators of transcriptional silencing and much more.
    Gartenberg MR
    Curr Opin Microbiol; 2000 Apr; 3(2):132-7. PubMed ID: 10744999
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Histone modifications and DNA double-strand break repair.
    Moore JD; Krebs JE
    Biochem Cell Biol; 2004 Aug; 82(4):446-52. PubMed ID: 15284897
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MUS81 encodes a novel helix-hairpin-helix protein involved in the response to UV- and methylation-induced DNA damage in Saccharomyces cerevisiae.
    Interthal H; Heyer WD
    Mol Gen Genet; 2000 Jun; 263(5):812-27. PubMed ID: 10905349
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel role for the budding yeast RAD9 checkpoint gene in DNA damage-dependent transcription.
    Aboussekhra A; Vialard JE; Morrison DE; de la Torre-Ruiz MA; Cernáková L; Fabre F; Lowndes NF
    EMBO J; 1996 Aug; 15(15):3912-22. PubMed ID: 8670896
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mending the break: two DNA double-strand break repair machines in eukaryotes.
    Krejci L; Chen L; Van Komen S; Sung P; Tomkinson A
    Prog Nucleic Acid Res Mol Biol; 2003; 74():159-201. PubMed ID: 14510076
    [No Abstract]   [Full Text] [Related]  

  • 58. Homologous recombination is essential for RAD51 up-regulation in Saccharomyces cerevisiae following DNA crosslinking damage.
    Cohen Y; Dardalhon M; Averbeck D
    Nucleic Acids Res; 2002 Mar; 30(5):1224-32. PubMed ID: 11861915
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of NBS1 in DNA double strand break repair, telomere stability, and cell cycle checkpoint control.
    Zhang Y; Zhou J; Lim CU
    Cell Res; 2006 Jan; 16(1):45-54. PubMed ID: 16467875
    [TBL] [Abstract][Full Text] [Related]  

  • 60. RAD51-independent break-induced replication to repair a broken chromosome depends on a distant enhancer site.
    Malkova A; Signon L; Schaefer CB; Naylor ML; Theis JF; Newlon CS; Haber JE
    Genes Dev; 2001 May; 15(9):1055-60. PubMed ID: 11331601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.