BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

711 related articles for article (PubMed ID: 9383013)

  • 1. Cognitive impairment in spontaneously hypertensive rats: role of central nicotinic receptors. Part II.
    Gattu M; Terry AV; Pauly JR; Buccafusco JJ
    Brain Res; 1997 Oct; 771(1):104-14. PubMed ID: 9383013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cognitive impairment in spontaneously hypertensive rats: role of central nicotinic receptors. I.
    Gattu M; Pauly JR; Boss KL; Summers JB; Buccafusco JJ
    Brain Res; 1997 Oct; 771(1):89-103. PubMed ID: 9383012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deficits in spatial learning and nicotinic-acetylcholine receptors in older, spontaneously hypertensive rats.
    Terry AV; Hernandez CM; Buccafusco JJ; Gattu M
    Neuroscience; 2000; 101(2):357-68. PubMed ID: 11074159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spinal nicotinic receptor expression in spontaneously hypertensive rats.
    Khan IM; Youngblood KL; Printz MP; Yaksh TL; Taylor P
    Hypertension; 1996 Dec; 28(6):1093-9. PubMed ID: 8952602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dahl salt-sensitive and salt-resistant rats: examination of learning and memory performance, blood pressure, and the expression of central nicotinic acetylcholine receptors.
    Terry AV; Hernandez CM; Buccafusco JJ
    Neuroscience; 2001; 103(2):351-63. PubMed ID: 11246150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spinal nicotinic receptor activity in a genetic model of hypertension.
    Khan IM; Stanislaus S; Zhang L; Vaughn D; Printz MP; Yaksh TL; Taylor P
    Clin Exp Hypertens; 2001 Oct; 23(7):555-68. PubMed ID: 11710757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proliferation of thyrotropin releasing hormone receptors in specific brain regions during the development of hypertension in spontaneously hypertensive rats.
    Bhargava HN; Das S; Bansinath M
    Peptides; 1987; 8(2):231-5. PubMed ID: 3035513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MEMRI reveals altered activity in brain regions associated with anxiety, locomotion, and cardiovascular reactivity on the elevated plus maze in the WKY vs SHR rats.
    Zubcevic J; Watkins J; Perez PD; Colon-Perez LM; Long MT; Febo M; Hayward L
    Brain Imaging Behav; 2018 Oct; 12(5):1318-1331. PubMed ID: 29181695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial learning/memory and social and nonsocial behaviors in the spontaneously hypertensive, Wistar-Kyoto and Sprague-Dawley rat strains.
    Ferguson SA; Cada AM
    Pharmacol Biochem Behav; 2004 Mar; 77(3):583-94. PubMed ID: 15006470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Autoradiographic comparison of muscarinic M1 and M2 binding sites in the CNS of spontaneously hypertensive and normotensive rats.
    Gattu M; Pauly JR; Urbanawiz S; Buccafusco JJ
    Brain Res; 1997 Oct; 771(2):173-83. PubMed ID: 9401737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related decline in spatial learning and memory: attenuation by captopril.
    Wyss JM; Kadish I; van Groen T
    Clin Exp Hypertens; 2003 Oct; 25(7):455-74. PubMed ID: 14596369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Augmented responses to intrathecal nicotinic agonists in spontaneous hypertension.
    Khan IM; Printz MP; Yaksh TL; Taylor P
    Hypertension; 1994 Nov; 24(5):611-9. PubMed ID: 7960022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined uridine and choline administration improves cognitive deficits in spontaneously hypertensive rats.
    De Bruin NM; Kiliaan AJ; De Wilde MC; Broersen LM
    Neurobiol Learn Mem; 2003 Jul; 80(1):63-79. PubMed ID: 12737935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneously hypertensive rats: further evaluation of age-related memory performance and cholinergic marker expression.
    Hernandez CM; Høifødt H; Terry AV
    J Psychiatry Neurosci; 2003 May; 28(3):197-209. PubMed ID: 12790160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nicotine-stimulated release of [3H]norepinephrine is reduced in the hippocampus of an animal model of attention-deficit/hyperactivity disorder, the spontaneously hypertensive rat.
    Sterley TL; Howells FM; Russell VA
    Brain Res; 2014 Jul; 1572():1-10. PubMed ID: 24833064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired maze learning and cerebral glucose utilization in aged hypertensive rats.
    Mori S; Kato M; Fujishima M
    Hypertension; 1995 Apr; 25(4 Pt 1):545-53. PubMed ID: 7721396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlation between brain bradykinin receptor binding sites and cardiovascular function in young and adult spontaneously hypertensive rats.
    Cloutier F; Ongali B; Campos MM; Thibault G; Neugebauer W; Couture R
    Br J Pharmacol; 2004 May; 142(2):285-96. PubMed ID: 15066903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasma corticosterone and renin activity during two-way active avoidance learning in spontaneously hypertensive and Wistar-Kyoto rats.
    Knardahl S; Murison R
    Behav Neural Biol; 1989 May; 51(3):389-400. PubMed ID: 2658949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of 3H-D-Pen2-D-Pen5-enkephalin to brain regions and spinal cord membranes of spontaneously hypertensive and normotensive Wistar-Kyoto rats.
    Bhargava HN; Rahmani NH
    Pharmacology; 1993; 46(2):75-81. PubMed ID: 8382821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of isradipine treatment on the morphology of the aorta in spontaneously hypertensive rats.
    Ferrante F; Abbate F; Ciriaco E; Laurà R; Amenta F
    J Hypertens; 1994 May; 12(5):523-31. PubMed ID: 7930552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 36.