These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 9383088)

  • 1. Is high extracellular glutamate the key to excitotoxicity in traumatic brain injury?
    Obrenovitch TP; Urenjak J
    J Neurotrauma; 1997 Oct; 14(10):677-98. PubMed ID: 9383088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury.
    Yi JH; Hazell AS
    Neurochem Int; 2006 Apr; 48(5):394-403. PubMed ID: 16473439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium influx constitutes the ionic basis for the maintenance of glutamate-induced extended neuronal depolarization associated with hippocampal neuronal death.
    Limbrick DD; Sombati S; DeLorenzo RJ
    Cell Calcium; 2003 Feb; 33(2):69-81. PubMed ID: 12531183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretch-induced injury in organotypic hippocampal slice cultures reproduces in vivo post-traumatic neurodegeneration: role of glutamate receptors and voltage-dependent calcium channels.
    Cater HL; Gitterman D; Davis SM; Benham CD; Morrison B; Sundstrom LE
    J Neurochem; 2007 Apr; 101(2):434-47. PubMed ID: 17250683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extracellular neurotransmitter changes in cerebral ischaemia.
    Obrenovitch TP; Richards DA
    Cerebrovasc Brain Metab Rev; 1995; 7(1):1-54. PubMed ID: 7742171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excitotoxic death induced by released glutamate in depolarized primary cultures of mouse cerebellar granule cells is dependent on GABAA receptors and niflumic acid-sensitive chloride channels.
    Babot Z; Cristòfol R; Suñol C
    Eur J Neurosci; 2005 Jan; 21(1):103-12. PubMed ID: 15654847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early, transient increase in complexin I and complexin II in the cerebral cortex following traumatic brain injury is attenuated by N-acetylcysteine.
    Yi JH; Hoover R; McIntosh TK; Hazell AS
    J Neurotrauma; 2006 Jan; 23(1):86-96. PubMed ID: 16430375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of glutamate receptors and voltage-dependent calcium and sodium channels in the extracellular glutamate/aspartate accumulation and subsequent neuronal injury induced by oxygen/glucose deprivation in cultured hippocampal neurons.
    Kimura M; Sawada K; Miyagawa T; Kuwada M; Katayama K; Nishizawa Y
    J Pharmacol Exp Ther; 1998 Apr; 285(1):178-85. PubMed ID: 9536008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GMP prevents excitotoxicity mediated by NMDA receptor activation but not by reversal activity of glutamate transporters in rat hippocampal slices.
    Molz S; Tharine DC; Decker H; Tasca CI
    Brain Res; 2008 Sep; 1231():113-20. PubMed ID: 18655777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of prolonged isoflurane anesthesia on plasma, extracellular, and CSF glutamate, neuronal activity, 125I-Mk801 NMDA receptor binding, and brain edema in traumatic brain-injured rats.
    Stover JF; Sakowitz OW; Kroppenstedt SN; Thomale UW; Kempski OS; Flügge G; Unterberg AW
    Acta Neurochir (Wien); 2004 Aug; 146(8):819-30. PubMed ID: 15254804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury?
    Ikonomidou C; Turski L
    Lancet Neurol; 2002 Oct; 1(6):383-6. PubMed ID: 12849400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of glutamate transport and receptor binding by glutamate receptor antagonists in EAE rat brain.
    Sulkowski G; Dąbrowska-Bouta B; Salińska E; Strużyńska L
    PLoS One; 2014; 9(11):e113954. PubMed ID: 25426719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamate alteration of glutamic acid decarboxylase (GAD) in GABAergic neurons: the role of cysteine proteases.
    Monnerie H; Le Roux PD
    Exp Neurol; 2008 Sep; 213(1):145-53. PubMed ID: 18599042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Excitotoxicity in neurological disorders--the glutamate paradox.
    Obrenovitch TP; Urenjak J; Zilkha E; Jay TM
    Int J Dev Neurosci; 2000; 18(2-3):281-7. PubMed ID: 10715582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention.
    Sheldon AL; Robinson MB
    Neurochem Int; 2007; 51(6-7):333-55. PubMed ID: 17517448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence against high extracellular glutamate promoting the elicitation of spreading depression by potassium.
    Obrenovitch TP; Zilkha E; Urenjak J
    J Cereb Blood Flow Metab; 1996 Sep; 16(5):923-31. PubMed ID: 8784236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Traumatic brain injury-induced excitotoxicity assessed in a controlled cortical impact model.
    Palmer AM; Marion DW; Botscheller ML; Swedlow PE; Styren SD; DeKosky ST
    J Neurochem; 1993 Dec; 61(6):2015-24. PubMed ID: 7504079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of increased extracellular glutamate levels on the local field potential in the brain of anaesthetized rats.
    Obrenovitch TP; Urenjak J; Zilkha E
    Br J Pharmacol; 1997 Sep; 122(2):372-8. PubMed ID: 9313949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered glutamatergic transmission in neurological disorders: from high extracellular glutamate to excessive synaptic efficacy.
    Obrenovitch TP; Urenjak J
    Prog Neurobiol; 1997 Jan; 51(1):39-87. PubMed ID: 9044428
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.