These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 9383472)

  • 1. Use of semi-synthetic transfer RNAs to probe molecular recognition by Escherichia coli proline-tRNA synthetase.
    Yap LP; Stehlin C; Musier-Forsyth K
    Chem Biol; 1995 Oct; 2(10):661-6. PubMed ID: 9383472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular recognition of tRNA(Pro) by Escherichia coli proline-tRNA synthetase.
    Liu H; Yap LP; Stehlin C; Musier-Forsyth K
    Nucleic Acids Symp Ser; 1995; (33):176-8. PubMed ID: 8643363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinctive acceptor-end structure and other determinants of Escherichia coli tRNAPro identity.
    McClain WH; Schneider J; Gabriel K
    Nucleic Acids Res; 1994 Feb; 22(3):522-9. PubMed ID: 8127693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular recognition of tRNA(Pro) by Escherichia coli proline tRNA synthetase in vitro.
    Liu H; Peterson R; Kessler J; Musier-Forsyth K
    Nucleic Acids Res; 1995 Jan; 23(1):165-9. PubMed ID: 7870582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional guanine-arginine interaction between tRNAPro and prolyl-tRNA synthetase that couples binding and catalysis.
    Burke B; An S; Musier-Forsyth K
    Biochim Biophys Acta; 2008 Sep; 1784(9):1222-5. PubMed ID: 18513497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Species-specific differences in the operational RNA code for aminoacylation of tRNAPro.
    Stehlin C; Burke B; Yang F; Liu H; Shiba K; Musier-Forsyth K
    Biochemistry; 1998 Jun; 37(23):8605-13. PubMed ID: 9622512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An isolated class II aminoacyl-tRNA synthetase insertion domain is functional in amino acid editing.
    Wong FC; Beuning PJ; Silvers C; Musier-Forsyth K
    J Biol Chem; 2003 Dec; 278(52):52857-64. PubMed ID: 14530268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of acceptor stem tRNA recognition by class II prolyl-tRNA synthetase.
    An S; Barany G; Musier-Forsyth K
    Nucleic Acids Res; 2008 May; 36(8):2514-21. PubMed ID: 18310681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Escherichia coli proline tRNA synthetase is sensitive to changes in the core region of tRNA(Pro).
    Liu H; Musier-Forsyth K
    Biochemistry; 1994 Oct; 33(42):12708-14. PubMed ID: 7522561
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for a conserved relationship between an acceptor stem and a tRNA for aminoacylation.
    Hou YM; Sterner T; Bhalla R
    RNA; 1995 Sep; 1(7):707-13. PubMed ID: 7585255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding species-specific differences in substrate recognition by Escherichia coli and human prolyl-tRNA synthetases.
    Musier-Forsyth K; Stehlin C; Burke B; Liu H
    Nucleic Acids Symp Ser; 1997; (36):5-7. PubMed ID: 9478190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structural basis of cysteine aminoacylation of tRNAPro by prolyl-tRNA synthetases.
    Kamtekar S; Kennedy WD; Wang J; Stathopoulos C; Söll D; Steitz TA
    Proc Natl Acad Sci U S A; 2003 Feb; 100(4):1673-8. PubMed ID: 12578991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stoichiometry of triple-sieve tRNA editing complex ensures fidelity of aminoacyl-tRNA formation.
    Chen L; Tanimoto A; So BR; Bakhtina M; Magliery TJ; Wysocki VH; Musier-Forsyth K
    Nucleic Acids Res; 2019 Jan; 47(2):929-940. PubMed ID: 30418624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. tRNA(Pro) anticodon recognition by Thermus thermophilus prolyl-tRNA synthetase.
    Cusack S; Yaremchuk A; Krikliviy I; Tukalo M
    Structure; 1998 Jan; 6(1):101-8. PubMed ID: 9493271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary coadaptation of the motif 2--acceptor stem interaction in the class II prolyl-tRNA synthetase system.
    Burke B; Yang F; Chen F; Stehlin C; Chan B; Musier-Forsyth K
    Biochemistry; 2000 Dec; 39(50):15540-7. PubMed ID: 11112540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initial position of aminoacylation of individual Escherichia coli, yeast, and calf liver transfer RNAs.
    Chinault AC; Tan KH; Hassur SM; Hecht SM
    Biochemistry; 1977 Feb; 16(4):766-76. PubMed ID: 319826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase.
    Schulman LH; Pelka H
    Fed Proc; 1984 Dec; 43(15):2977-80. PubMed ID: 6389181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Species-specific microhelix aminoacylation by a eukaryotic pathogen tRNA synthetase dependent on a single base pair.
    Quinn CL; Tao N; Schimmel P
    Biochemistry; 1995 Oct; 34(39):12489-95. PubMed ID: 7547995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Divergent adaptation of tRNA recognition by Methanococcus jannaschii prolyl-tRNA synthetase.
    Burke B; Lipman RS; Shiba K; Musier-Forsyth K; Hou YM
    J Biol Chem; 2001 Jun; 276(23):20286-91. PubMed ID: 11342535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic aminoacylation of tRNA acceptor stem helices with cysteine is dependent on a single nucleotide.
    Hamann CS; Hou YM
    Biochemistry; 1995 May; 34(19):6527-32. PubMed ID: 7756283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.