BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 9383710)

  • 1. Actin isoform utilization during differentiation and remodeling of BC3H1 myogenic cells.
    Qu G; Yan H; Strauch AR
    J Cell Biochem; 1997 Dec; 67(4):514-27. PubMed ID: 9383710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density-dependent modulation of vascular smooth muscle alpha-actin biosynthetic processing in differentiated BC3H1 myogenic cells.
    Strauch AR; Min B; Reeser JC; Yan H; Foster DN; Berman MD
    J Cell Biochem; 1992 Nov; 50(3):266-78. PubMed ID: 1469063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteoglycan biosynthesis is required in BC3H1 myogenic cells for modulation of vascular smooth muscle alpha-actin gene expression in response to microenvironmental signals.
    Lee SH; Yan H; Reeser JC; Dillman JM; Strauch AR
    J Cell Physiol; 1995 Jul; 164(1):172-86. PubMed ID: 7790390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actin isoform expression, cellular heterogeneity, and contractile function in smooth muscle.
    Drew JS; Murphy RA
    Can J Physiol Pharmacol; 1997 Jul; 75(7):869-77. PubMed ID: 9315356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The levels of vascular smooth as well as skeletal muscle actin mRNAs differ substantially among both myoblast and fibroblast lines with different skeletal myogenic potentials.
    Sharp SB; Vazquez A; Theimer M; Silva DK; Muscati SR; Sylber M; Mogassa M
    Cell Mol Biol (Noisy-le-grand); 1992 Dec; 38(8):903-13. PubMed ID: 1477607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonuniform behavior of multiple isoactins in the same cell is a cell-dependent phenomenon.
    Shires AK; Rubenstein PA
    Cell Motil Cytoskeleton; 1989; 14(2):263-70. PubMed ID: 2611893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrate-associated macromolecules promote cytodifferentiation of BC3H1 myogenic cells.
    Strauch AR; Berman MD; Miller HR
    J Cell Physiol; 1991 Mar; 146(3):337-48. PubMed ID: 1708777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The molecular mechanisms of SM22alpha in cytoskeleton remodeling of vascular smooth muscle cells].
    Wen JK; Shi JH; Zheng B; Meng F; Han M
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2008 Nov; 24(4):393-7. PubMed ID: 21158134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gelsolin sensitivity of microfilaments as a marker for muscle differentiation.
    Huckriede A; Hinssen H; Jockusch BM; Lazarides E
    Eur J Cell Biol; 1988 Aug; 46(3):506-12. PubMed ID: 2846307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunolocalization of muscle and nonmuscle isoforms of actin in myogenic cells and adult skeletal muscle.
    Otey CA; Kalnoski MH; Bulinski JC
    Cell Motil Cytoskeleton; 1988; 9(4):337-48. PubMed ID: 3292062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tropomodulin and tropomyosin mediate lens cell actin cytoskeleton reorganization in vitro.
    Fischer RS; Lee A; Fowler VM
    Invest Ophthalmol Vis Sci; 2000 Jan; 41(1):166-74. PubMed ID: 10634617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellular and molecular control of vascular smooth muscle alpha-actin gene expression during BC3H1 myogenic cell differentiation.
    Strauch AR; Min B; Reeser JC; Berman MD; Miller HR; Foster DN
    Prog Clin Biol Res; 1990; 327():583-9. PubMed ID: 2181477
    [No Abstract]   [Full Text] [Related]  

  • 13. Dynamic changes in the state of actin polymerization in human alveolar cells exposed to the oxidant agent paraquat.
    Cappelletti G; Maggioni MG; Candia Carnevali MD; Bonasoro F; Maci R
    Eur J Cell Biol; 1996 Nov; 71(3):293-302. PubMed ID: 8929568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biphasic pattern of gelsolin expression and variations in gelsolin-actin interactions during myogenesis.
    Scholz A; Hinssen H
    Exp Cell Res; 1995 Aug; 219(2):384-91. PubMed ID: 7641789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stretch-dependent growth and differentiation in vascular smooth muscle: role of the actin cytoskeleton.
    Hellstrand P; Albinsson S
    Can J Physiol Pharmacol; 2005 Oct; 83(10):869-75. PubMed ID: 16333359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing actin polymerization by intermolecular cross-linking.
    Millonig R; Salvo H; Aebi U
    J Cell Biol; 1988 Mar; 106(3):785-96. PubMed ID: 3346326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytoskeleton/stretch-activated ion channel interaction regulates myogenic differentiation of skeletal myoblasts.
    Formigli L; Meacci E; Sassoli C; Squecco R; Nosi D; Chellini F; Naro F; Francini F; Zecchi-Orlandini S
    J Cell Physiol; 2007 May; 211(2):296-306. PubMed ID: 17295211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The levels of vascular smooth as well as skeletal muscle actin mRNAS differ substantially among both myoblast and fibroblast lines with different skeletal myogenic potentials.
    Sharp SB; Vazquez A; Theimer M; Silva DK; Muscati SR; Sylber M; Mogassa M
    Cell Mol Biol; 1992 Aug; 38(5):485-504. PubMed ID: 1468109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cytoskeleton of stromal cells from human bone marrow cultures resembles that of cultured smooth muscle cells.
    Charbord P; Lerat H; Newton I; Tamayo E; Gown AM; Singer JW; Herve P
    Exp Hematol; 1990 May; 18(4):276-82. PubMed ID: 2182332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tetraspanin CD82 controls the association of cholesterol-dependent microdomains with the actin cytoskeleton in T lymphocytes: relevance to co-stimulation.
    Delaguillaumie A; Harriague J; Kohanna S; Bismuth G; Rubinstein E; Seigneuret M; Conjeaud H
    J Cell Sci; 2004 Oct; 117(Pt 22):5269-82. PubMed ID: 15454569
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.