These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 9384762)
1. Separation of polynuclear aromatic hydrocarbons by micellar electrokinetic capillary chromatography using sodium taurodeoxycholate modified with organic solvents. Dabek-Zlotorzynska E; Lai EP J Capillary Electrophor; 1996; 3(1):31-5. PubMed ID: 9384762 [TBL] [Abstract][Full Text] [Related]
2. Development of separation systems for polynuclear aromatic hydrocarbon environmental contaminants using micellar electrokinetic chromatography with molecular micelles and free zone electrophoresis. Moy TW; Ferguson PL; Grange AH; Matchett WH; Kelliher VA; Brumley WC; Glassman J; Farley JW Electrophoresis; 1998 Sep; 19(12):2090-4. PubMed ID: 9761186 [TBL] [Abstract][Full Text] [Related]
3. Mixed-mode separation of polycyclic aromatic hydrocarbons (PAHs) in electrokinetic chromatography. Luong JH; Guo Y Electrophoresis; 1998 May; 19(5):723-30. PubMed ID: 9629906 [TBL] [Abstract][Full Text] [Related]
4. The combined effect of acetonitrile and urea on the separation of polycyclic aromatic hydrocarbons using sodium dioctyl sulfosuccinate in electrokinetic chromatography. Luong JH Electrophoresis; 1998 Jun; 19(8-9):1461-7. PubMed ID: 9694296 [TBL] [Abstract][Full Text] [Related]
5. Comparison of micellar electrokinetic chromatography (MEKC) with capillary gas chromatography in the separation of phenols, anilines and polynuclear aromatics potential field-screening applications of MEKC. Brumley WC; Jones WJ J Chromatogr A; 1994 Sep; 680(1):163-73. PubMed ID: 7952000 [TBL] [Abstract][Full Text] [Related]
6. Comparison of monolithic capillary electrochromatography and micellar electrokinetic chromatography for the separation of polycyclic aromatic hydrocarbons. Salwiński A; Delépée R Talanta; 2014 May; 122():180-6. PubMed ID: 24720981 [TBL] [Abstract][Full Text] [Related]
7. Separation of lipophilic compounds by micellar electrokinetic chromatography with organic modifiers. Otsuka K; Higashimori M; Koike R; Karuhaka K; Okada Y; Terabe S Electrophoresis; 1994 Oct; 15(10):1280-3. PubMed ID: 7895719 [TBL] [Abstract][Full Text] [Related]
8. Phosphated surfactants as pseudostationary phase for micellar electrokinetic chromatography: separation of polycyclic aromatic hydrocarbons. Akbay C; Shamsi SA; Warner IM Electrophoresis; 1997 Feb; 18(2):253-9. PubMed ID: 9080134 [TBL] [Abstract][Full Text] [Related]
9. The direct separation of the diastereoisomers and enantiomers of the fungicide triadimenol by micellar electrokinetic capillary chromatography. Williams BD; Trenerry VC J Capillary Electrophor; 1996; 3(4):223-8. PubMed ID: 9384741 [TBL] [Abstract][Full Text] [Related]
10. Capillary zone electrophoresis and micellar electrokinetic chromatography, with taurodeoxycholate as micellar agent, of protein kinase A peptide substrates. Beijersten I; Westerlund D Electrophoresis; 1996 Jan; 17(1):161-7. PubMed ID: 8907534 [TBL] [Abstract][Full Text] [Related]
11. Determination of polynuclear aromatic hydrocarbons (PAHs) in sewage sludge by micellar electrokinetic capillary chromatography and HPLC-fluorescence detection: a comparative study. Alzola R; Pons B; Bravo D; Arranz A Environ Technol; 2008 Nov; 29(11):1219-28. PubMed ID: 18975854 [TBL] [Abstract][Full Text] [Related]
12. Stacking and separation of coproporphyrin isomers by acetonitrile-salt mixtures in micellar electrokinetic chromatography. So TS; Jia L; Huie CW Electrophoresis; 2001 Jul; 22(11):2159-66. PubMed ID: 11504047 [TBL] [Abstract][Full Text] [Related]
13. Comparison of cyclodextrin modified micellar electrokinetic capillary chromatography and reversed-phase liquid chromatography for separation of polycyclic aromatic hydrocarbons. Jinno K; Sawada Y J Capillary Electrophor; 1995; 2(4):151-5. PubMed ID: 9384768 [TBL] [Abstract][Full Text] [Related]
14. Comparison of the Performance of Different Bile Salts in Enantioselective Separation of Palonosetron Stereoisomers by Micellar Electrokinetic Chromatography. Hu S; Sun T; Li R; Zhang D; Zhang Y; Yang Z; Feng G; Guo X Molecules; 2022 Aug; 27(16):. PubMed ID: 36014471 [TBL] [Abstract][Full Text] [Related]
15. Analysis of anxiolytic drugs by capillary electrophoresis with bare and coated capillaries. Jinno K; Han Y; Nakamura M J Capillary Electrophor; 1996; 3(3):139-45. PubMed ID: 9384746 [TBL] [Abstract][Full Text] [Related]
16. Micellar electrokinetic chromatographic studies in D2O based buffer solutions. Greenaway M; Okafo G; Manallack D; Camilleri P Electrophoresis; 1994 Oct; 15(10):1284-9. PubMed ID: 7895720 [TBL] [Abstract][Full Text] [Related]
17. Determination of the enantiomeric purity of N-propionyl-6,7-dimethoxy-2-aminotetralin by cyclodextrin-modified micellar electrokinetic chromatography. Castelnovo P; Albanesi C Electrophoresis; 1997 Jun; 18(6):996-1001. PubMed ID: 9221889 [TBL] [Abstract][Full Text] [Related]
18. Investigation of solvent effects in capillary electrophoresis for the separation of biological porphyrin methyl esters. Li Q; Chang CK; Huie CW Electrophoresis; 2005 Sep; 26(17):3349-59. PubMed ID: 16080211 [TBL] [Abstract][Full Text] [Related]
19. Effects of organic mobile phase modifiers on elution and separation of beta-blockers in micellar electrokinetic capillary chromatography. Lukkari P; Vuorela H; Riekkola ML J Chromatogr A; 1993 Dec; 655(2):317-24. PubMed ID: 7906595 [TBL] [Abstract][Full Text] [Related]
20. Analysis of the transformation of nitroaromatic compounds in wastewater by bacteria using micellar electrokinetic capillary chromatography. Chow TM; Liu J; Piwoni M; Adrian NR J Capillary Electrophor; 1997; 4(4):189-94. PubMed ID: 9627835 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]