These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 9384790)
1. Reconstruction of calvarial defects by bioresorbable ceramics: an experimental study in rats. Schliephake H; Redecker K; Kage T Mund Kiefer Gesichtschir; 1997 Mar; 1(2):115-20. PubMed ID: 9384790 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of bone regeneration using resorbable ceramics and a polymer-ceramic composite material. Schliephake H; Kage T J Biomed Mater Res; 2001 Jul; 56(1):128-36. PubMed ID: 11309799 [TBL] [Abstract][Full Text] [Related]
3. [Effect of glass ceramics on bone regeneration in calvarial defects. Experimental study]. Berens A; Schliephake H; Dilmaghani S; Schuster A Mund Kiefer Gesichtschir; 2000 Sep; 4 Suppl 2():S522-6. PubMed ID: 11094528 [TBL] [Abstract][Full Text] [Related]
4. A 1-year study of osteoinduction in hydroxyapatite-derived biomaterials in an adult sheep model: part II. Bioengineering implants to optimize bone replacement in reconstruction of cranial defects. Gosain AK; Riordan PA; Song L; Amarante MT; Kalantarian B; Nagy PG; Wilson CR; Toth JM; McIntyre BL Plast Reconstr Surg; 2004 Oct; 114(5):1155-63; discussion 1164-5. PubMed ID: 15457027 [TBL] [Abstract][Full Text] [Related]
5. [Effect of fibrin on osseointegration of bioactive glass-ceramic materials--experimental study]. Urban K; Povýsil C; Spelda S Acta Chir Orthop Traumatol Cech; 2001; 68(3):168-75. PubMed ID: 11706539 [TBL] [Abstract][Full Text] [Related]
6. Repair of calvarial defects in rats by prefabricated hydroxyapatite cement implants. Schliephake H; Gruber R; Dard M; Wenz R; Scholz S J Biomed Mater Res A; 2004 Jun; 69(3):382-90. PubMed ID: 15127384 [TBL] [Abstract][Full Text] [Related]
7. New bone and connective tissue ingrowth in a hydroxyapatite block repairing a rabbit skull defect. Lindholm TC; Lindholm TS Ann Chir Gynaecol Suppl; 1993; 207():109-15. PubMed ID: 8154824 [TBL] [Abstract][Full Text] [Related]
8. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Xu S; Lin K; Wang Z; Chang J; Wang L; Lu J; Ning C Biomaterials; 2008 Jun; 29(17):2588-96. PubMed ID: 18378303 [TBL] [Abstract][Full Text] [Related]
9. Reconstruction of the immature craniofacial skeleton with a carbonated calcium phosphate bone cement: interaction with bioresorbable mesh. Losee JE; Karmacharya J; Gannon FH; Slemp AE; Ong G; Hunenko O; Gorden AD; Bartlett SP; Kirschner RE J Craniofac Surg; 2003 Jan; 14(1):117-24. PubMed ID: 12544233 [TBL] [Abstract][Full Text] [Related]
10. Guided bone regeneration in standardized calvarial defects using beta-tricalcium phosphate and collagen membrane: a real-time in vivo micro-computed tomographic experiment in rats. Ramalingam S; Al-Rasheed A; ArRejaie A; Nooh N; Al-Kindi M; Al-Hezaimi K Odontology; 2016 May; 104(2):199-210. PubMed ID: 26156449 [TBL] [Abstract][Full Text] [Related]
11. Repair of cranial bone defects with calcium phosphate ceramic implant or autogenous bone graft. da Silva RV; Bertran CA; Kawachi EY; Camilli JA J Craniofac Surg; 2007 Mar; 18(2):281-6. PubMed ID: 17414276 [TBL] [Abstract][Full Text] [Related]
12. Comparative performance of three ceramic bone graft substitutes. Hing KA; Wilson LF; Buckland T Spine J; 2007; 7(4):475-90. PubMed ID: 17630146 [TBL] [Abstract][Full Text] [Related]
13. Assessment of the effect of a biphasic ceramic on bone response in a rat calvarial defect model. Develioğlu H; Saraydin SU; Bolayir G; Dupoirieux L J Biomed Mater Res A; 2006 Jun; 77(3):627-31. PubMed ID: 16514598 [TBL] [Abstract][Full Text] [Related]
14. The effect of a biphasic ceramic on calvarial bone regeneration in rats. Develioğlu H; Koptagel E; Gedik R; Dupoirieux L J Oral Implantol; 2005; 31(6):309-12. PubMed ID: 16447905 [TBL] [Abstract][Full Text] [Related]
15. Superior effect of MD05, beta-tricalcium phosphate coated with recombinant human growth/differentiation factor-5, compared to conventional bone substitutes in the rat calvarial defect model. Poehling S; Pippig SD; Hellerbrand K; Siedler M; Schütz A; Dony C J Periodontol; 2006 Sep; 77(9):1582-90. PubMed ID: 16945037 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the osteoconductivity of α-tricalcium phosphate, β-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect. Rojbani H; Nyan M; Ohya K; Kasugai S J Biomed Mater Res A; 2011 Sep; 98(4):488-98. PubMed ID: 21681941 [TBL] [Abstract][Full Text] [Related]
17. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Eggli PS; Müller W; Schenk RK Clin Orthop Relat Res; 1988 Jul; (232):127-38. PubMed ID: 2838207 [TBL] [Abstract][Full Text] [Related]
18. The effect of a fibrin-fibronectin/beta-tricalcium phosphate/recombinant human bone morphogenetic protein-2 system on bone formation in rat calvarial defects. Hong SJ; Kim CS; Han DK; Cho IH; Jung UW; Choi SH; Kim CK; Cho KS Biomaterials; 2006 Jul; 27(20):3810-6. PubMed ID: 16574220 [TBL] [Abstract][Full Text] [Related]
19. Histologic comparison of ceramic and titanium implants in cats. Barth E; Johansson C; Albrektsson T Int J Oral Maxillofac Implants; 1990; 5(3):227-31. PubMed ID: 2098326 [TBL] [Abstract][Full Text] [Related]
20. Bone healing with an in situ-formed bioresorbable polyethylene glycol hydrogel membrane in rabbit calvarial defects. Humber CC; Sándor GK; Davis JM; Peel SA; Brkovic BM; Kim YD; Holmes HI; Clokie CM Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2010 Mar; 109(3):372-84. PubMed ID: 20060340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]