These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 938492)

  • 1. The computation of hyperbolic dependences in enzyme kinetics.
    Airas RK
    Biochem J; 1976 May; 155(2):449-52. PubMed ID: 938492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exact and approximate solutions for the decades-old Michaelis-Menten equation: Progress-curve analysis through integrated rate equations.
    Goličnik M
    Biochem Mol Biol Educ; 2011; 39(2):117-25. PubMed ID: 21445903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fitting enzyme-kinetic data to V/K.
    Northrop DB
    Anal Biochem; 1983 Jul; 132(2):457-61. PubMed ID: 6625178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extensions to Michaelis-Menten Kinetics for Single Parameters.
    Ariyawansha RTK; Basnayake BFA; Karunarathna AK; Mowjood MIM
    Sci Rep; 2018 Nov; 8(1):16586. PubMed ID: 30410043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rate equations and simulation curves for enzymatic reactions which utilize lipids as substrates. II. Effect of adsorption of the substrate or enzyme on the steady-state kinetics.
    Gatt S; Bartfai T
    Biochim Biophys Acta; 1977 Jul; 488(1):13-24. PubMed ID: 889854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Michaelis-Menten equation for degradation of insoluble substrate.
    Andersen M; Kari J; Borch K; Westh P
    Math Biosci; 2018 Feb; 296():93-97. PubMed ID: 29197509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pocket computer program for fitting the Michaelis-Menten equation.
    Oestreicher EG; Pinto GF
    Comput Biol Med; 1983; 13(4):309-15. PubMed ID: 6689285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rate equations and simulation curves for enzymatic reactions which utilize lipids as substrates. I. Interaction of enzymes with the monomers and micelles of soluble, amphiphilic lipids.
    Gatt S; Bartfai T
    Biochim Biophys Acta; 1977 Jul; 488(1):1-12. PubMed ID: 889849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sigmoidal substrate saturation curves in Michaelis-Menten mechanism as an artefact.
    Fischer E; Keleti T
    Acta Biochim Biophys Acad Sci Hung; 1975; 10(3):221-7. PubMed ID: 1211106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validity of the Michaelis-Menten equation--steady-state or reactant stationary assumption: that is the question.
    Schnell S
    FEBS J; 2014 Jan; 281(2):464-72. PubMed ID: 24245583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of rate law approximations in bottom-up kinetic models of metabolism.
    Du B; Zielinski DC; Kavvas ES; Dräger A; Tan J; Zhang Z; Ruggiero KE; Arzumanyan GA; Palsson BO
    BMC Syst Biol; 2016 Jun; 10(1):40. PubMed ID: 27266508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ENZEDUC 1.0: a user-friendly software package for computation of hyperbolic enzyme kinetic data in biochemical education.
    Marino A; Fedriani JR
    Comput Methods Programs Biomed; 1996 Mar; 49(2):131-5. PubMed ID: 8735020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A thermal-variation method for analysing the rate constants of the Michaelis--Menten mechanism.
    Lin SX; Chou KC; Wong JT
    Biochem J; 1982 Oct; 207(1):179-81. PubMed ID: 7181857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fitting of enzyme kinetic data without prior knowledge of weights.
    Cornish-Bowden A; Endrenyi L
    Biochem J; 1981 Mar; 193(3):1005-8. PubMed ID: 7305951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The kinetics of facilitated diffusion followed by enzymatic conversion of the substrate.
    ter Kuile BH; Cook M
    Biochim Biophys Acta; 1994 Aug; 1193(2):235-9. PubMed ID: 8054344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic analysis of a Michaelis-Menten mechanism in which the enzyme is unstable.
    Garrido-del Solo C; García-Cánovas F; Havsteen BH; Varón-Castellanos R
    Biochem J; 1993 Sep; 294 ( Pt 2)(Pt 2):459-64. PubMed ID: 8373361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deviations from Michaelis-Menten kinetics. The possibility of complicated curves for simple kinetic schemes and the computer fitting of experimental data for acetylcholinesterase, acid phosphatase, adenosine deaminase, arylsulphatase, benzylamine oxidase, chymotrypsin, fumarase, galactose dehydrogenase, beta-galactosidase, lactate dehydrogenase, peroxidase and xanthine oxidase.
    Bardsley WG; Leff P; Kavanagh J; Waight RD
    Biochem J; 1980 Jun; 187(3):739-65. PubMed ID: 6821369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the estimation errors of K
    Stroberg W; Schnell S
    Biophys Chem; 2016 Dec; 219():17-27. PubMed ID: 27677118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A semi-integrated method for the determination of enzyme kinetic parameters and graphical representation of the Michaelis-Menten equation.
    Naqui A; Chance B
    Anal Biochem; 1984 Aug; 141(1):179-83. PubMed ID: 6496926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Final phase of enzyme reactions following a Michaelis-Menten mechanisms in which the free enzyme and/or the enzyme-substrate complex are unstable.
    Varón R; Garrido del Solo C; García-Moreno M; Sánchez-Gracia A; García-Cánovas F
    Biol Chem Hoppe Seyler; 1994 Jan; 375(1):35-42. PubMed ID: 8003255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.