These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 9385137)

  • 1. Regulation of N-acetylglucosaminidase production in Candida albicans.
    Niimi K; Niimi M; Shepherd MG; Cannon RD
    Arch Microbiol; 1997 Dec; 168(6):464-72. PubMed ID: 9385137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature-related expression of the vacuolar aspartic proteinase (APR1) gene and beta-N-acetylglucosaminidase (HEX1) gene during Candida albicans morphogenesis.
    Niimi M; Niimi K; Cannon RD
    FEMS Microbiol Lett; 1997 Mar; 148(2):247-54. PubMed ID: 9084153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The secretion of N-acetylglucosaminidase during germ-tube formation in Candida albicans.
    Sullivan PA; McHugh NJ; Romana LK; Shepherd MG
    J Gen Microbiol; 1984 Sep; 130(9):2213-8. PubMed ID: 6389758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular cloning and expression of the Candida albicans beta-N-acetylglucosaminidase (HEX1) gene.
    Cannon RD; Niimi K; Jenkinson HF; Shepherd MG
    J Bacteriol; 1994 May; 176(9):2640-7. PubMed ID: 8169213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Candida albicans HEX1 gene, a reporter of gene expression in Saccharomyces cerevisiae.
    Niimi K; Shepherd MG; Cannon RD
    Arch Microbiol; 1998 Aug; 170(2):113-9. PubMed ID: 9683648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of two forms of N-acetylglucosaminidase from Candida albicans showing widely different outer chain glycosylation.
    Molloy C; Cannon RD; Sullivan PA; Shepherd MG
    Microbiology (Reading); 1994 Jul; 140 ( Pt 7)():1543-53. PubMed ID: 8075797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulated overexpression of CDR1 in Candida albicans confers multidrug resistance.
    Niimi M; Niimi K; Takano Y; Holmes AR; Fischer FJ; Uehara Y; Cannon RD
    J Antimicrob Chemother; 2004 Dec; 54(6):999-1006. PubMed ID: 15486081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential extraction of N-acetylglucosaminidase and trehalase from the cell envelope of Candida albicans.
    Molloy C; Shepherd MG; Sullivan PA
    Exp Mycol; 1995 Sep; 19(3):178-85. PubMed ID: 7553268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo role of Candida albicans β-hexosaminidase (HEX1) in carbon scavenging.
    Ruhela D; Kamthan M; Saha P; Majumdar SS; Datta K; Abdin MZ; Datta A
    Microbiologyopen; 2015 Oct; 4(5):730-42. PubMed ID: 26177944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of extracellular N-acetyl-D-glucosaminidase production in the entomopathogenic fungus Beauveria bassiana.
    Bidochka MJ; Khachatourians GG
    Can J Microbiol; 1993 Jan; 39(1):6-12. PubMed ID: 8439875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corynebacterium glutamicum possesses β-N-acetylglucosaminidase.
    Matano C; Kolkenbrock S; Hamer SN; Sgobba E; Moerschbacher BM; Wendisch VF
    BMC Microbiol; 2016 Aug; 16(1):177. PubMed ID: 27492186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mutant of Candida albicans deficient in beta-N-acetylglucosaminidase (chitobiase).
    Jenkinson HF; Shepherd MG
    J Gen Microbiol; 1987 Aug; 133(8):2097-106. PubMed ID: 3327914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinguishing Candida species by beta-N-acetylhexosaminidase activity.
    Niimi K; Shepherd MG; Cannon RD
    J Clin Microbiol; 2001 Jun; 39(6):2089-97. PubMed ID: 11376040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The requirements for bicarbonate and metabolism of the inducer during germ tube formation by Candida albicans.
    Pollack JH; Hashimoto T
    Can J Microbiol; 1988 Nov; 34(11):1183-8. PubMed ID: 2850098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of mycelial type of development in Candida albicans by the antibiotic monorden and N-acetyl-D-glucosamine.
    Hrmová M; Drobnica L
    Mycopathologia; 1982 Jul; 79(1):55-64. PubMed ID: 6750407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-acetyl-D-glucosamine-induced morphogenesis in Candida albicans.
    Cassone A; Sullivan PA; Shepherd MG
    Microbiologica; 1985 Jan; 8(1):85-99. PubMed ID: 3883103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymes of N-acetylglucosamine metabolism during germ-tube formation in Candida albicans.
    Gopal P; Sullivan PA; Shepherd MG
    J Gen Microbiol; 1982 Oct; 128(10):2319-26. PubMed ID: 6296272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of N-acetylmannosamine catabolic pathway in yeast.
    Biswas M; Singh B; Datta A
    Biochim Biophys Acta; 1979 Jul; 585(4):535-42. PubMed ID: 223651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gratuitous induction by N-acetylmannosamine of germ tube formation and enzymes for N-acetylglucosamine utilization in Candida albicans.
    Sullivan PA; Shepherd MG
    J Bacteriol; 1982 Sep; 151(3):1118-22. PubMed ID: 6286591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucose repression of the inducible catabolic pathway for N-acetylglucosamine in yeast.
    Singh BR; Datta A
    Biochem Biophys Res Commun; 1978 Sep; 84(1):58-64. PubMed ID: 215141
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.