These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 938732)

  • 1. Electron transport in xanthine oxidase. A model for other biological electron transport chains.
    Van Heuvelen A
    Biophys J; 1976 Aug; 16(8):939-51. PubMed ID: 938732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct electron transfer of xanthine oxidase and its catalytic reduction to nitrate.
    Wu Y; Hu S
    Anal Chim Acta; 2007 Oct; 602(2):181-6. PubMed ID: 17933602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DIRECT STUDIES ON THE ELECTRON TRANSFER SEQUENCE IN XANTHINE OXIDASE BY ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY. II. KINETIC STUDIES EMPLOYING RAPID FREEZING.
    BRAY RC; PALMER G; BEINERT H
    J Biol Chem; 1964 Aug; 239():2667-76. PubMed ID: 14235551
    [No Abstract]   [Full Text] [Related]  

  • 4. Coupled electron/proton transfer in complex flavoproteins: solvent kinetic isotope effect studies of electron transfer in xanthine oxidase and trimethylamine dehydrogenase.
    Hille R; Anderson RF
    J Biol Chem; 2001 Aug; 276(33):31193-201. PubMed ID: 11395485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mammalian xanthine oxidoreductase - mechanism of transition from xanthine dehydrogenase to xanthine oxidase.
    Nishino T; Okamoto K; Eger BT; Pai EF; Nishino T
    FEBS J; 2008 Jul; 275(13):3278-89. PubMed ID: 18513323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the mechanism of action of xanthine oxidase.
    Choi EY; Stockert AL; Leimkühler S; Hille R
    J Inorg Biochem; 2004 May; 98(5):841-8. PubMed ID: 15134930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mechanistic principle for proton pumping by cytochrome c oxidase.
    Faxén K; Gilderson G; Adelroth P; Brzezinski P
    Nature; 2005 Sep; 437(7056):286-9. PubMed ID: 16148937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DIRECT STUDIES ON THE ELECTRON TRANSFER SEQUENCE IN XANTHINE OXIDASE BY ELECTRON PARAMAGNETIC RESONANCE SPECTROSCOPY. I. TECHNIQUES AND DESCRIPTION OF SPECTRA.
    PALMER G; BRAY RC; BEINERT H
    J Biol Chem; 1964 Aug; 239():2657-66. PubMed ID: 14235550
    [No Abstract]   [Full Text] [Related]  

  • 9. Application of electron-donor properties of glucose oxidase and xanthine oxidase for reduction of microsomal NAD(P)H-dependent electron-transport chains.
    Izotov MV; Shcherbakov VM; Spiridonova SM; Devichenskiy VM; Benediktova SA
    Biotechnol Appl Biochem; 1991 Feb; 13(1):90-6. PubMed ID: 2054105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New insights into the catalytic cycle of flavocytochrome b2.
    Daff S; Ingledew WJ; Reid GA; Chapman SK
    Biochemistry; 1996 May; 35(20):6345-50. PubMed ID: 8639579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical studies of arsenite oxidase: an unusual example of a highly cooperative two-electron molybdenum center.
    Hoke KR; Cobb N; Armstrong FA; Hille R
    Biochemistry; 2004 Feb; 43(6):1667-74. PubMed ID: 14769044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-electron and two-electron transfer mechanisms in enzymic oxidation-reduction reactions.
    Yamazaki I
    Adv Biophys; 1971; 2():33-76. PubMed ID: 4146736
    [No Abstract]   [Full Text] [Related]  

  • 13. Reactive oxygen species produced by NADPH oxidase, xanthine oxidase, and mitochondrial electron transport system mediate heat shock-induced MMP-1 and MMP-9 expression.
    Shin MH; Moon YJ; Seo JE; Lee Y; Kim KH; Chung JH
    Free Radic Biol Med; 2008 Feb; 44(4):635-45. PubMed ID: 18036352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two mutations convert mammalian xanthine oxidoreductase to highly superoxide-productive xanthine oxidase.
    Asai R; Nishino T; Matsumura T; Okamoto K; Igarashi K; Pai EF; Nishino T
    J Biochem; 2007 Apr; 141(4):525-34. PubMed ID: 17301076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molybdenum and tungsten enzymes: the xanthine oxidase family.
    Brondino CD; Romão MJ; Moura I; Moura JJ
    Curr Opin Chem Biol; 2006 Apr; 10(2):109-14. PubMed ID: 16480912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrite reductase activity of rat and human xanthine oxidase, xanthine dehydrogenase, and aldehyde oxidase: evaluation of their contribution to NO formation in vivo.
    Maia LB; Pereira V; Mira L; Moura JJ
    Biochemistry; 2015 Jan; 54(3):685-710. PubMed ID: 25537183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xanthine oxidase binding to glycosaminoglycans: kinetics and superoxide dismutase interactions of immobilized xanthine oxidase-heparin complexes.
    Radi R; Rubbo H; Bush K; Freeman BA
    Arch Biochem Biophys; 1997 Mar; 339(1):125-35. PubMed ID: 9056242
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Reaction of fluorescein bimercuric acetate with a molybdenum center of xanthine oxidase from milk].
    Kozachenko AI; Nagler LG; Lependina OL; Ianovskaia IM; Vartanian LS
    Biokhimiia; 1987 Dec; 52(12):1948-57. PubMed ID: 2833934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive oxygen disrupts mitochondria in MA-10 tumor Leydig cells and inhibits steroidogenic acute regulatory (StAR) protein and steroidogenesis.
    Diemer T; Allen JA; Hales KH; Hales DB
    Endocrinology; 2003 Jul; 144(7):2882-91. PubMed ID: 12810543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-Hydroxyguanidine compound 1-(3,4-dimethoxy- 2-chlorobenzylideneamino)-3-hydroxyguanidine inhibits the xanthine oxidase mediated generation of superoxide radical.
    Dambrova M; Baumane L; Kiuru A; Kalvinsh I; Wikberg JE
    Arch Biochem Biophys; 2000 May; 377(1):101-8. PubMed ID: 10775447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.