These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 9388180)

  • 1. Coupled quantum dots fabricated by cleaved edge overgrowth: from artificial atoms to molecules.
    Schedelbeck G; Wegscheider W; Bichler M; Abstreiter G
    Science; 1997 Dec; 278(5344):1792-5. PubMed ID: 9388180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupled Colloidal Quantum Dot Molecules.
    Koley S; Cui J; Panfil YE; Banin U
    Acc Chem Res; 2021 Mar; 54(5):1178-1188. PubMed ID: 33459013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Coulomb Blockade in Coupled Quantum Dots.
    Livermore C; Crouch CH; Westervelt RM; Campman KL; Gossard AC
    Science; 1996 Nov; 274(5291):1332-5. PubMed ID: 8910263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relativistic Artificial Molecules Realized by Two Coupled Graphene Quantum Dots.
    Fu ZQ; Pan Y; Zhou JJ; Bai KK; Ma DL; Zhang Y; Qiao JB; Jiang H; Liu H; He L
    Nano Lett; 2020 Sep; 20(9):6738-6743. PubMed ID: 32787177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real Space Observation of Electronic Coupling between Self-Assembled Quantum Dots.
    Rodary G; Bernardi L; David C; Fain B; Lemaître A; Girard JC
    Nano Lett; 2019 Jun; 19(6):3699-3706. PubMed ID: 31026170
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport Spectroscopy of a Spin-Coherent Dot-Cavity System.
    Rössler C; Oehri D; Zilberberg O; Blatter G; Karalic M; Pijnenburg J; Hofmann A; Ihn T; Ensslin K; Reichl C; Wegscheider W
    Phys Rev Lett; 2015 Oct; 115(16):166603. PubMed ID: 26550890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Kondo effect in an artificial quantum dot molecule.
    Jeong H; Chang AM; Melloch MR
    Science; 2001 Sep; 293(5538):2221-3. PubMed ID: 11567130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-field strong coupling of single quantum dots.
    Groß H; Hamm JM; Tufarelli T; Hess O; Hecht B
    Sci Adv; 2018 Mar; 4(3):eaar4906. PubMed ID: 29511739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Singly ionized double-donor complex in vertically coupled quantum dots.
    Manjarres-García R; Escorcia-Salas GE; Mikhailov ID; Sierra-Ortega J
    Nanoscale Res Lett; 2012 Aug; 7(1):489. PubMed ID: 22937880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybridization of electronic states in quantum dots through photon emission.
    Karrai K; Warburton RJ; Schulhauser C; Högele A; Urbaszek B; McGhee EJ; Govorov AO; Garcia JM; Gerardot BD; Petroff PM
    Nature; 2004 Jan; 427(6970):135-8. PubMed ID: 14712271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical properties of photonic molecules and elliptical pillars made of ZnSe-based microcavities.
    Sebald K; Seyfried M; Klembt S; Kruse C
    Opt Express; 2011 Sep; 19(20):19422-9. PubMed ID: 21996883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-Dependent Lattice Dynamics of Atomically Precise Cadmium Selenide Quantum Dots.
    Shi C; Beecher AN; Li Y; Owen JS; Leu BM; Said AH; Hu MY; Billinge SJL
    Phys Rev Lett; 2019 Jan; 122(2):026101. PubMed ID: 30720324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anomalous Light Emission and Wide Photoluminescence Spectra in Graphene Quantum Dot: Quantum Confinement from Edge Microstructure.
    Huang P; Shi JJ; Zhang M; Jiang XH; Zhong HX; Ding YM; Cao X; Wu M; Lu J
    J Phys Chem Lett; 2016 Aug; 7(15):2888-92. PubMed ID: 27409980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Filling of hole arrays with InAs quantum dots.
    Lee JY; Noordhoek MJ; Smereka P; McKay H; Millunchick JM
    Nanotechnology; 2009 Jul; 20(28):285305. PubMed ID: 19546494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. T-shaped GaAs quantum-wire lasers and the exciton Mott transition.
    Yoshita M; Liu SM; Okano M; Hayamizu Y; Akiyama H; Pfeiffer LN; West KW
    J Phys Condens Matter; 2007 Jul; 19(29):295217. PubMed ID: 21483069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Yield Production of Quantum Corrals in a Surface Reconstruction Pattern.
    Dou W; Wu M; Song B; Zhi G; Hua C; Zhou M; Niu T
    Nano Lett; 2023 Jan; 23(1):148-154. PubMed ID: 36566458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino-functionalized graphene quantum dots: origin of tunable heterogeneous photoluminescence.
    Kumar GS; Roy R; Sen D; Ghorai UK; Thapa R; Mazumder N; Saha S; Chattopadhyay KK
    Nanoscale; 2014 Mar; 6(6):3384-91. PubMed ID: 24531861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybridized Defects in Solid-State Materials as Artificial Molecules.
    Wang DS; Ciccarino CJ; Flick J; Narang P
    ACS Nano; 2021 Mar; 15(3):5240-5248. PubMed ID: 33600145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent dependent synthesis of edge-controlled graphene quantum dots with high photoluminescence quantum yield and their application in confocal imaging of cancer cells.
    Rajender G; Goswami U; Giri PK
    J Colloid Interface Sci; 2019 Apr; 541():387-398. PubMed ID: 30710821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.