These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 9388610)
21. Solid-state NMR investigation of the selective disruption of lipid membranes by protegrin-1. Mani R; Buffy JJ; Waring AJ; Lehrer RI; Hong M Biochemistry; 2004 Nov; 43(43):13839-48. PubMed ID: 15504046 [TBL] [Abstract][Full Text] [Related]
22. Structural Changes and Proapoptotic Peroxidase Activity of Cardiolipin-Bound Mitochondrial Cytochrome c. Mandal A; Hoop CL; DeLucia M; Kodali R; Kagan VE; Ahn J; van der Wel PC Biophys J; 2015 Nov; 109(9):1873-84. PubMed ID: 26536264 [TBL] [Abstract][Full Text] [Related]
23. Combinatorial microscopy for the study of protein-membrane interactions in supported lipid bilayers: Order parameter measurements by combined polarized TIRFM/AFM. Oreopoulos J; Yip CM J Struct Biol; 2009 Oct; 168(1):21-36. PubMed ID: 19268707 [TBL] [Abstract][Full Text] [Related]
24. Modulation of the specific interaction of cardiolipin with Cytochrome c by Zwitterionic phospholipids in binary mixed bilayers: a 2H and 31P-NMR study. Kim A; Jeong IC; Shim YB; Kang SW; Park JS J Biochem Mol Biol; 2005 Nov; 38(6):446-451. PubMed ID: 16353315 [No Abstract] [Full Text] [Related]
26. Interaction of substance P with phospholipid bilayers: A neutron diffraction study. Bradshaw JP; Davies SM; Hauss T Biophys J; 1998 Aug; 75(2):889-95. PubMed ID: 9675189 [TBL] [Abstract][Full Text] [Related]
27. Solid-state NMR approaches for studying the interaction of peptides and proteins with membranes. Watts A Biochim Biophys Acta; 1998 Nov; 1376(3):297-318. PubMed ID: 9804977 [No Abstract] [Full Text] [Related]
28. Phosphate-mediated arginine insertion into lipid membranes and pore formation by a cationic membrane peptide from solid-state NMR. Tang M; Waring AJ; Hong M J Am Chem Soc; 2007 Sep; 129(37):11438-46. PubMed ID: 17705480 [TBL] [Abstract][Full Text] [Related]
29. Biomembrane simulations of 12 lipid types using the general amber force field in a tensionless ensemble. Coimbra JT; Sousa SF; Fernandes PA; Rangel M; Ramos MJ J Biomol Struct Dyn; 2014; 32(1):88-103. PubMed ID: 23730894 [TBL] [Abstract][Full Text] [Related]
30. Solid state NMR investigation of the interaction between biomimetic lipid bilayers and de novo designed fusogenic peptides. Agrawal P; Kiihne S; Hollander J; Hulsbergen F; Hofmann M; Langosch D; de Groot H Chembiochem; 2007 Mar; 8(5):493-6. PubMed ID: 17328022 [No Abstract] [Full Text] [Related]
31. Vesicle and bilayer formation of diphytanoylphosphatidylcholine (DPhPC) and diphytanoylphosphatidylethanolamine (DPhPE) mixtures and their bilayers' electrical stability. Andersson M; Jackman J; Wilson D; Jarvoll P; Alfredsson V; Okeyo G; Duran R Colloids Surf B Biointerfaces; 2011 Feb; 82(2):550-61. PubMed ID: 21071188 [TBL] [Abstract][Full Text] [Related]
32. The antimalarial agent halofantrine perturbs phosphatidylcholine and phosphatidylethanolamine bilayers: a differential scanning calorimetric study. Lim LY; Go ML Chem Pharm Bull (Tokyo); 1999 Jun; 47(6):732-7. PubMed ID: 10399830 [TBL] [Abstract][Full Text] [Related]
33. Conformation and Trimer Association of the Transmembrane Domain of the Parainfluenza Virus Fusion Protein in Lipid Bilayers from Solid-State NMR: Insights into the Sequence Determinants of Trimer Structure and Fusion Activity. Lee M; Yao H; Kwon B; Waring AJ; Ruchala P; Singh C; Hong M J Mol Biol; 2018 Mar; 430(5):695-709. PubMed ID: 29330069 [TBL] [Abstract][Full Text] [Related]
34. Lipid-protein nanoscale bilayers: a versatile medium for NMR investigations of membrane proteins and membrane-active peptides. Lyukmanova EN; Shenkarev ZO; Paramonov AS; Sobol AG; Ovchinnikova TV; Chupin VV; Kirpichnikov MP; Blommers MJ; Arseniev AS J Am Chem Soc; 2008 Feb; 130(7):2140-1. PubMed ID: 18229924 [No Abstract] [Full Text] [Related]
35. PMP1 18-38, a yeast plasma membrane protein fragment, binds phosphatidylserine from bilayer mixtures with phosphatidylcholine: a (2)H-NMR study. Roux M; Beswick V; Coïc YM; Huynh-Dinh T; Sanson A; Neumann JM Biophys J; 2000 Nov; 79(5):2624-31. PubMed ID: 11053135 [TBL] [Abstract][Full Text] [Related]
36. Resonance energy transfer study of hemoglobin and cytochrome c complexes with lipids. Gorbenko GP Biochim Biophys Acta; 1998 Nov; 1409(1):12-24. PubMed ID: 9804870 [TBL] [Abstract][Full Text] [Related]
37. Lipid-protein interactions of integral membrane proteins: a comparative simulation study. Deol SS; Bond PJ; Domene C; Sansom MS Biophys J; 2004 Dec; 87(6):3737-49. PubMed ID: 15465855 [TBL] [Abstract][Full Text] [Related]
38. Differential scanning calorimetric study of the effect of the antimicrobial peptide gramicidin S on the thermotropic phase behavior of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol lipid bilayer membranes. Prenner EJ; Lewis RN; Kondejewski LH; Hodges RS; McElhaney RN Biochim Biophys Acta; 1999 Mar; 1417(2):211-23. PubMed ID: 10082797 [TBL] [Abstract][Full Text] [Related]
39. Study of bradykinin conformation in the presence of model membrane by Nuclear Magnetic Resonance and molecular modelling. Bonechi C; Ristori S; Martini G; Martini S; Rossi C Biochim Biophys Acta; 2009 Mar; 1788(3):708-16. PubMed ID: 19272336 [TBL] [Abstract][Full Text] [Related]
40. Peptide models of the helical hydrophobic transmembrane segments of membrane proteins: interactions of acetyl-K2-(LA)12-K2-amide with phosphatidylethanolamine bilayer membranes. Zhang YP; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2001 Jan; 40(2):474-82. PubMed ID: 11148042 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]