BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 9388658)

  • 1. Correlated mutations and subtype specificity in the adrenergic receptor.
    Gouldson PR; Bywater RP; Reynolds CA
    Biochem Soc Trans; 1997 Aug; 25(3):434S. PubMed ID: 9388658
    [No Abstract]   [Full Text] [Related]  

  • 2. Activation of the beta 2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6.
    Ballesteros JA; Jensen AD; Liapakis G; Rasmussen SG; Shi L; Gether U; Javitch JA
    J Biol Chem; 2001 Aug; 276(31):29171-7. PubMed ID: 11375997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of critical determinants of alpha 1-adrenergic receptor subtype selective agonist binding.
    Hwa J; Graham RM; Perez DM
    J Biol Chem; 1995 Sep; 270(39):23189-95. PubMed ID: 7559466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutation of a single TMVI residue, Phe(282), in the beta(2)-adrenergic receptor results in structurally distinct activated receptor conformations.
    Chen S; Lin F; Xu M; Riek RP; Novotny J; Graham RM
    Biochemistry; 2002 May; 41(19):6045-53. PubMed ID: 11993999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo mutation of the alpha 2A-adrenergic receptor by homologous recombination reveals the role of this receptor subtype in multiple physiological processes.
    MacMillan LB; Lakhlani PP; Hein L; Piascik M; Guo TZ; Lovinger D; Maze M; Limbird LE
    Adv Pharmacol; 1998; 42():493-6. PubMed ID: 9327947
    [No Abstract]   [Full Text] [Related]  

  • 6. The conserved aspartate residue in the third putative transmembrane domain of the delta-opioid receptor is not the anionic counterpart for cationic opiate binding but is a constituent of the receptor binding site.
    Befort K; Tabbara L; Bausch S; Chavkin C; Evans C; Kieffer B
    Mol Pharmacol; 1996 Feb; 49(2):216-23. PubMed ID: 8632752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-directed mutagenesis of the human beta3-adrenoceptor--transmembrane residues involved in ligand binding and signal transduction.
    Gros J; Manning BS; Pietri-Rouxel F; Guillaume JL; Drumare MF; Strosberg AD
    Eur J Biochem; 1998 Feb; 251(3):590-6. PubMed ID: 9490030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aspartate mutation distinguishes ETA but not ETB receptor subtype-selective ligand binding while abolishing phospholipase C activation in both receptors.
    Rose PM; Krystek SR; Patel PS; Liu EC; Lynch JS; Lach DA; Fisher SM; Webb ML
    FEBS Lett; 1995 Mar; 361(2-3):243-9. PubMed ID: 7698331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-directed mutagenesis analysis of the role of the M5S5 sector of the sarcoplasmic reticulum Ca(2+)-ATPase.
    Andersen JP; Sørensen T; Vilsen B
    Ann N Y Acad Sci; 1997 Nov; 834():333-8. PubMed ID: 9432910
    [No Abstract]   [Full Text] [Related]  

  • 10. Molecular mechanisms of ligand binding and activation in alpha 1-adrenergic receptors.
    Perez DM; Hwa J; Zhao MM; Porter J
    Adv Pharmacol; 1998; 42():398-403. PubMed ID: 9327924
    [No Abstract]   [Full Text] [Related]  

  • 11. Mapping the binding-site crevice of the D2 receptor.
    Javitch JA
    Adv Pharmacol; 1998; 42():412-5. PubMed ID: 9327927
    [No Abstract]   [Full Text] [Related]  

  • 12. Dominant-negative activity of an alpha(1B)-adrenergic receptor signal-inactivating point mutation.
    Chen S; Lin F; Xu M; Hwa J; Graham RM
    EMBO J; 2000 Aug; 19(16):4265-71. PubMed ID: 10944109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residues in transmembrane regions III and VI contribute to the 5-ht6 receptor ligand binding site.
    Boess FG; Monsma FJ; Bourson A; Zwingelstein C; Sleight AJ
    Ann N Y Acad Sci; 1998 Dec; 861():242-3. PubMed ID: 9928266
    [No Abstract]   [Full Text] [Related]  

  • 14. Altered ligand dissociation rates in thyrotropin-releasing hormone receptors mutated in glutamine 105 of transmembrane helix III.
    del Camino D; Barros F; Pardo LA; de la Peña P
    Biochemistry; 1997 Mar; 36(11):3308-18. PubMed ID: 9116009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An aspartate in the second extracellular loop of the α(1B) adrenoceptor regulates agonist binding.
    Campbell AP; MacDougall IJ; Griffith R; Finch AM
    Eur J Pharmacol; 2014 Jun; 733():90-6. PubMed ID: 24690260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aspartate 196 in the first extracellular loop of the human VIP1 receptor is essential for VIP binding and VIP-stimulated cAMP production.
    Du K; Nicole P; Couvineau A; Laburthe M
    Biochem Biophys Res Commun; 1997 Jan; 230(2):289-92. PubMed ID: 9016768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of Thr214 in the conserved TGES sequence of the Na+,K+-ATPase for vanadate binding and hydrolysis of E2P.
    Toustrup-Jensen M; Vilsen B
    Ann N Y Acad Sci; 2003 Apr; 986():267-9. PubMed ID: 12763817
    [No Abstract]   [Full Text] [Related]  

  • 18. A dileucine motif in the C terminus of the beta2-adrenergic receptor is involved in receptor internalization.
    Gabilondo AM; Hegler J; Krasel C; Boivin-Jahns V; Hein L; Lohse MJ
    Proc Natl Acad Sci U S A; 1997 Nov; 94(23):12285-90. PubMed ID: 9356441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-specificity features of HSV-1 thymidine kinases.
    Evans JS; Lock KP; Levine BA; Champness JN; Sanderson MR; Summers WC; Buchan A
    Biochem Soc Trans; 1997 Nov; 25(4):S621. PubMed ID: 9450049
    [No Abstract]   [Full Text] [Related]  

  • 20. [Adrenergic receptor and alpha 2 agonist--2: Structure-function relationship of adrenoceptors].
    Mizobe T
    Masui; 1997 Jun; 46(6):770-6. PubMed ID: 9223879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.