These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 9390168)
1. Isolation of carboxylester lipase (CEL) isoenzymes from Candida rugosa and identification of the corresponding genes. Diczfalusy MA; Hellman U; Alexson SE Arch Biochem Biophys; 1997 Dec; 348(1):1-8. PubMed ID: 9390168 [TBL] [Abstract][Full Text] [Related]
2. Isolation and characterization of novel long-chain acyl-CoA thioesterase/carboxylesterase isoenzymes from Candida rugosa. Diczfalusy MA; Alexson SE Arch Biochem Biophys; 1996 Oct; 334(1):104-12. PubMed ID: 8837745 [TBL] [Abstract][Full Text] [Related]
3. Identification of a triacylglycerol lipase gene family in Candida deformans: molecular cloning and functional expression. Bigey F; Tuery K; Bougard D; Nicaud JM; Moulin G Yeast; 2003 Feb; 20(3):233-48. PubMed ID: 12557276 [TBL] [Abstract][Full Text] [Related]
4. Codon optimization of Candida rugosa lip1 gene for improving expression in Pichia pastoris and biochemical characterization of the purified recombinant LIP1 lipase. Chang SW; Lee GC; Shaw JF J Agric Food Chem; 2006 Feb; 54(3):815-22. PubMed ID: 16448188 [TBL] [Abstract][Full Text] [Related]
5. Efficient production of active recombinant Candida rugosa LIP3 lipase in Pichia pastoris and biochemical characterization of the purified enzyme. Chang SW; Lee GC; Shaw JF J Agric Food Chem; 2006 Aug; 54(16):5831-8. PubMed ID: 16881684 [TBL] [Abstract][Full Text] [Related]
6. Enantioselectivity of Candida rugosa lipases (Lip1, Lip3, and Lip4) towards 2-bromo phenylacetic acid octyl esters controlled by a single amino acid. Piamtongkam R; Duquesne S; Bordes F; Barbe S; André I; Marty A; Chulalaksananukul W Biotechnol Bioeng; 2011 Aug; 108(8):1749-56. PubMed ID: 21391204 [TBL] [Abstract][Full Text] [Related]
7. Multiple mutagenesis of non-universal serine codons of the Candida rugosa LIP2 gene and biochemical characterization of purified recombinant LIP2 lipase overexpressed in Pichia pastoris. Lee GC; Lee LC; Sava V; Shaw JF Biochem J; 2002 Sep; 366(Pt 2):603-11. PubMed ID: 12020350 [TBL] [Abstract][Full Text] [Related]
8. Altering the substrate specificity of Candida rugosa LIP4 by engineering the substrate-binding sites. Lee LC; Chen YT; Yen CC; Chiang TC; Tang SJ; Lee GC; Shaw JF J Agric Food Chem; 2007 Jun; 55(13):5103-8. PubMed ID: 17536826 [TBL] [Abstract][Full Text] [Related]
9. C-terminal region of Candida rugosa lipases affects enzyme activity and interfacial activation. Hung KS; Chen SY; Liu HF; Tsai BR; Chen HW; Huang CY; Liao JL; Sun KH; Tang SJ J Agric Food Chem; 2011 May; 59(10):5396-401. PubMed ID: 21504227 [TBL] [Abstract][Full Text] [Related]
10. Engineering the expression and biochemical characteristics of recombinant Candida rugosa LIP2 lipase by removing the additional N-terminal peptide and regional codon optimization. Chang SW; Li CF; Lee GC; Yeh T; Shaw JF J Agric Food Chem; 2011 Jun; 59(12):6710-9. PubMed ID: 21561168 [TBL] [Abstract][Full Text] [Related]
11. [High expression of LIP1 in Pichia pastoris]. Bei JL; Wang JW; Wang XZ; Long QX; Yang L; Deng YY Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2003 Apr; 35(4):366-70. PubMed ID: 12673392 [TBL] [Abstract][Full Text] [Related]
12. Reactivity of pure Candida rugosa lipase isoenzymes (Lip1, Lip2, and Lip3) in aqueous and organic media. influence of the isoenzymatic profile on the lipase performance in organic media. López N; Pernas MA; Pastrana LM; Sánchez A; Valero F; Rúa ML Biotechnol Prog; 2004; 20(1):65-73. PubMed ID: 14763825 [TBL] [Abstract][Full Text] [Related]
13. Purification and characterization of Lip2 and Lip3 isoenzymes from a Candida rugosa pilot-plant scale fed-batch fermentation. Pernas MA; López C; Pastrana L; Rúa ML J Biotechnol; 2001 Nov; 84(2):163-74. PubMed ID: 11090688 [TBL] [Abstract][Full Text] [Related]
14. Fine separation and characterization of Candida rugosa lipase isoenzymes. Xin JY; Xiao-Xue Hu YX; Cui JR; Li SB; Xia CG; Zhu LM J Basic Microbiol; 2002; 42(5):355-63. PubMed ID: 12362407 [TBL] [Abstract][Full Text] [Related]
15. Variability within the Candida rugosa lipases family. Lotti M; Tramontano A; Longhi S; Fusetti F; Brocca S; Pizzi E; Alberghina L Protein Eng; 1994 Apr; 7(4):531-5. PubMed ID: 8029208 [TBL] [Abstract][Full Text] [Related]
16. The codon CUG is read as serine in an asporogenic yeast Candida cylindracea. Kawaguchi Y; Honda H; Taniguchi-Morimura J; Iwasaki S Nature; 1989 Sep; 341(6238):164-6. PubMed ID: 2506450 [TBL] [Abstract][Full Text] [Related]
17. Hydrolysis of steryl esters by a lipase (Lip 3) from Candida rugosa. Tenkanen M; Kontkanen H; Isoniemi R; Spetz P; Holmbom B Appl Microbiol Biotechnol; 2002 Oct; 60(1-2):120-7. PubMed ID: 12382052 [TBL] [Abstract][Full Text] [Related]
18. High-level expression of Rhizopus niveus lipase in the yeast Saccharomyces cerevisiae and structural properties of the expressed enzyme. Kohno M; Enatsu M; Yoshiizumi M; Kugimiya W Protein Expr Purif; 1999 Apr; 15(3):327-35. PubMed ID: 10092492 [TBL] [Abstract][Full Text] [Related]
19. Cloning of a novel lipase gene, lipJ08, from Candida rugosa and expression in Pichia pastoris by codon optimization. Xu L; Jiang X; Yang J; Liu Y; Yan Y Biotechnol Lett; 2010 Feb; 32(2):269-76. PubMed ID: 19841868 [TBL] [Abstract][Full Text] [Related]
20. Design, total synthesis, and functional overexpression of the Candida rugosa lip1 gene coding for a major industrial lipase. Brocca S; Schmidt-Dannert C; Lotti M; Alberghina L; Schmid RD Protein Sci; 1998 Jun; 7(6):1415-22. PubMed ID: 9655346 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]