BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 9390250)

  • 1. An algorithm for prediction of structural elements in small proteins.
    Kolinski A; Skolnick J; Godzik A
    Pac Symp Biocomput; 1996; ():446-60. PubMed ID: 9390250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for the prediction of surface "U"-turns and transglobular connections in small proteins.
    Kolinski A; Skolnick J; Godzik A; Hu WP
    Proteins; 1997 Feb; 27(2):290-308. PubMed ID: 9061792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined multiple sequence reduced protein model approach to predict the tertiary structure of small proteins.
    Ortiz AR; Kolinski A; Skolnick J
    Pac Symp Biocomput; 1998; ():377-88. PubMed ID: 9697197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fold assembly of small proteins using monte carlo simulations driven by restraints derived from multiple sequence alignments.
    Ortiz AR; Kolinski A; Skolnick J
    J Mol Biol; 1998 Mar; 277(2):419-48. PubMed ID: 9514747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PFRES: protein fold classification by using evolutionary information and predicted secondary structure.
    Chen K; Kurgan L
    Bioinformatics; 2007 Nov; 23(21):2843-50. PubMed ID: 17942446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Method for low resolution prediction of small protein tertiary structure.
    Ortiz AR; Hu WP; Kolinski A; Skolnick J
    Pac Symp Biocomput; 1997; ():316-27. PubMed ID: 9390302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein structure prediction of CASP5 comparative modeling and fold recognition targets using consensus alignment approach and 3D assessment.
    Ginalski K; Rychlewski L
    Proteins; 2003; 53 Suppl 6():410-7. PubMed ID: 14579329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SnapDRAGON: a method to delineate protein structural domains from sequence data.
    George RA; Heringa J
    J Mol Biol; 2002 Feb; 316(3):839-51. PubMed ID: 11866536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein fold recognition by mapping predicted secondary structures.
    Russell RB; Copley RR; Barton GJ
    J Mol Biol; 1996 Jun; 259(3):349-65. PubMed ID: 8676374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying the tertiary fold of small proteins with different topologies from sequence and secondary structure using the genetic algorithm and extended criteria specific for strand regions.
    Dandekar T; Argos P
    J Mol Biol; 1996 Mar; 256(3):645-60. PubMed ID: 8604145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding small proteins via annealing stochastic approximation Monte Carlo.
    Cheon S; Liang F
    Biosystems; 2011 Sep; 105(3):243-9. PubMed ID: 21679746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural networks for secondary structure and structural class predictions.
    Chandonia JM; Karplus M
    Protein Sci; 1995 Feb; 4(2):275-85. PubMed ID: 7757016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple sequence threading: an analysis of alignment quality and stability.
    Taylor WR
    J Mol Biol; 1997 Jun; 269(5):902-43. PubMed ID: 9223650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein topology recognition from secondary structure sequences: application of the hidden Markov models to the alpha class proteins.
    Di Francesco V; Garnier J; Munson PJ
    J Mol Biol; 1997 Mar; 267(2):446-63. PubMed ID: 9096237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein conformational transitions coupled to binding in molecular recognition of unstructured proteins: deciphering the effect of intermolecular interactions on computational structure prediction of the p27Kip1 protein bound to the cyclin A-cyclin-dependent kinase 2 complex.
    Verkhivker GM
    Proteins; 2005 Feb; 58(3):706-16. PubMed ID: 15609350
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme.
    Kolinski A; Skolnick J
    Proteins; 1994 Apr; 18(4):338-52. PubMed ID: 8208726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein secondary structure prediction with SPARROW.
    Bettella F; Rasinski D; Knapp EW
    J Chem Inf Model; 2012 Feb; 52(2):545-56. PubMed ID: 22224407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high-accuracy protein structural class prediction algorithm using predicted secondary structural information.
    Liu T; Jia C
    J Theor Biol; 2010 Dec; 267(3):272-5. PubMed ID: 20831876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HYPROSP II--a knowledge-based hybrid method for protein secondary structure prediction based on local prediction confidence.
    Lin HN; Chang JM; Wu KP; Sung TY; Hsu WL
    Bioinformatics; 2005 Aug; 21(15):3227-33. PubMed ID: 15932901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulations of protein folding. II. Application to protein A, ROP, and crambin.
    Kolinski A; Skolnick J
    Proteins; 1994 Apr; 18(4):353-66. PubMed ID: 8208727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.