These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 9390253)

  • 41. Structural characterization of alpha-helices of implicitly solvated poly-alanine.
    Couch VA; Cheng N; Nambiar K; Fink W
    J Phys Chem B; 2006 Feb; 110(7):3410-9. PubMed ID: 16494355
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Proportion of solvent-exposed amino acids in a protein and rate of protein evolution.
    Lin YS; Hsu WL; Hwang JK; Li WH
    Mol Biol Evol; 2007 Apr; 24(4):1005-11. PubMed ID: 17264066
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Secondary structure induction in aqueous vs membrane-like environments.
    Blondelle SE; Forood B; Houghten RA; Pérez-Payá E
    Biopolymers; 1997 Oct; 42(4):489-98. PubMed ID: 9283295
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular dynamics as a tool to detect protein foldability. A mutant of domain B1 of protein G with non-native secondary structure propensities.
    Cregut D; Serrano L
    Protein Sci; 1999 Feb; 8(2):271-82. PubMed ID: 10048320
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Context-dependent nature of destabilizing mutations on the stability of FKBP12.
    Main ER; Fulton KF; Jackson SE
    Biochemistry; 1998 Apr; 37(17):6145-53. PubMed ID: 9558354
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gaussian mixture modeling of alpha-helix subclasses: structure and sequence variations.
    Tendulkar AV; Ogunnaike B; Wangikar PP
    Pac Symp Biocomput; 2006; ():291-302. PubMed ID: 17094247
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Generality of the structurally constrained protein evolution model: assessment on representatives of the four main fold classes.
    Parisi G; Echave J
    Gene; 2005 Jan; 345(1):45-53. PubMed ID: 15716088
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Intraresidue distribution of energy in proteins.
    Trebbi B; Fanti M; Rossi I; Zerbetto F
    J Phys Chem B; 2005 Mar; 109(8):3586-93. PubMed ID: 16851397
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Peptide models XLV: conformational properties of N-formyl-L-methioninamide and its relevance to methionine in proteins.
    Láng A; Csizmadia IG; Perczel A
    Proteins; 2005 Feb; 58(3):571-88. PubMed ID: 15616985
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Use of constrained synthetic amino acids in beta-helix proteins for conformational control.
    Zanuy D; Jiménez AI; Cativiela C; Nussinov R; Alemán C
    J Phys Chem B; 2007 Mar; 111(12):3236-42. PubMed ID: 17388467
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Classification of the environment of protein residues.
    Deerfield DW; Holland-Minkley AM; Geigel J; Nicholas HB
    J Protein Chem; 1997 Jul; 16(5):441-7. PubMed ID: 9246626
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Amino acid size, charge, hydropathy indices and matrices for protein structure analysis.
    Biro JC
    Theor Biol Med Model; 2006 Mar; 3():15. PubMed ID: 16551371
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Discovering structural correlations in alpha-helices.
    Klingler TM; Brutlag DL
    Protein Sci; 1994 Oct; 3(10):1847-57. PubMed ID: 7849600
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spatial and free energy distribution patterns of amino acid residues in water soluble proteins.
    Nauchitel VV; Somorjai RL
    Biophys Chem; 1994 Aug; 51(2-3):327-36. PubMed ID: 7919041
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis of amino acid indices and mutation matrices for sequence comparison and structure prediction of proteins.
    Tomii K; Kanehisa M
    Protein Eng; 1996 Jan; 9(1):27-36. PubMed ID: 9053899
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of structural and sequence information in the prediction of protein stability changes: comparison between buried and partially buried mutations.
    Gromiha MM; Oobatake M; Kono H; Uedaira H; Sarai A
    Protein Eng; 1999 Jul; 12(7):549-55. PubMed ID: 10436080
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thermodynamics of neutral protein evolution.
    Bloom JD; Raval A; Wilke CO
    Genetics; 2007 Jan; 175(1):255-66. PubMed ID: 17110496
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Analyzing site heterogeneity during protein evolution.
    Koshi JM; Goldstein RA
    Pac Symp Biocomput; 2001; ():191-202. PubMed ID: 11262940
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Conservation of the secondary structure of protein during evolution and the role of the genetic code.
    Soto MA; Sepúlveda A; Tohá J
    Orig Life Evol Biosph; 1985; 16(2):157-64. PubMed ID: 3835506
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Amino acid properties conserved in molecular evolution.
    Rudnicki WR; Mroczek T; Cudek P
    PLoS One; 2014; 9(6):e98983. PubMed ID: 24967708
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.