These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 9390261)
1. A greedy strategy for finding motifs from yes-no examples. Tateishi E; Miyano S Pac Symp Biocomput; 1996; ():599-613. PubMed ID: 9390261 [TBL] [Abstract][Full Text] [Related]
2. Occurrence probability of structured motifs in random sequences. Robin S; Daudin JJ; Richard H; Sagot MF; Schbath S J Comput Biol; 2002; 9(6):761-73. PubMed ID: 12614545 [TBL] [Abstract][Full Text] [Related]
3. GAME: detecting cis-regulatory elements using a genetic algorithm. Wei Z; Jensen ST Bioinformatics; 2006 Jul; 22(13):1577-84. PubMed ID: 16632495 [TBL] [Abstract][Full Text] [Related]
4. Inferring regulatory elements from a whole genome. An analysis of Helicobacter pylori sigma(80) family of promoter signals. Vanet A; Marsan L; Labigne A; Sagot MF J Mol Biol; 2000 Mar; 297(2):335-53. PubMed ID: 10715205 [TBL] [Abstract][Full Text] [Related]
5. Conservative extraction of over-represented extensible motifs. Apostolico A; Comin M; Parida L Bioinformatics; 2005 Jun; 21 Suppl 1():i9-18. PubMed ID: 15961503 [TBL] [Abstract][Full Text] [Related]
6. An approach to detection of protein structural motifs using an encoding scheme of backbone conformations. Matsuda H; Taniguchi F; Hashimoto A Pac Symp Biocomput; 1997; ():280-91. PubMed ID: 9390299 [TBL] [Abstract][Full Text] [Related]
8. Controlled synthesis of target strings in a class of splicing systems. Chen PC Biosystems; 2005 Aug; 81(2):155-63. PubMed ID: 15885878 [TBL] [Abstract][Full Text] [Related]
9. A motif-based framework for recognizing sequence families. Sharan R; Myers EW Bioinformatics; 2005 Jun; 21 Suppl 1():i387-93. PubMed ID: 15961483 [TBL] [Abstract][Full Text] [Related]
10. Recognition of human genes by stochastic parsing. Asai K; Itou K; Ueno Y; Yada T Pac Symp Biocomput; 1998; ():228-39. PubMed ID: 9697185 [TBL] [Abstract][Full Text] [Related]
11. Socket: a program for identifying and analysing coiled-coil motifs within protein structures. Walshaw J; Woolfson DN J Mol Biol; 2001 Apr; 307(5):1427-50. PubMed ID: 11292353 [TBL] [Abstract][Full Text] [Related]
12. The in silico prediction of promoters in bacterial genomes. Towsey M; Hogan JM; Mathews S; Timms P Genome Inform; 2007; 19():178-89. PubMed ID: 18546515 [TBL] [Abstract][Full Text] [Related]
14. PRECISE: software for prediction of cis-acting regulatory elements. Trindade LM; van Berloo R; Fiers M; Visser RG J Hered; 2005; 96(5):618-22. PubMed ID: 16135709 [TBL] [Abstract][Full Text] [Related]
15. A case study where biology inspired a solution to a computer science problem. Koza JR; Andre D Pac Symp Biocomput; 1996; ():500-11. PubMed ID: 9390254 [TBL] [Abstract][Full Text] [Related]
16. Protein phylogenetic inference using maximum likelihood with a genetic algorithm. Matsuda H Pac Symp Biocomput; 1996; ():512-23. PubMed ID: 9390255 [TBL] [Abstract][Full Text] [Related]
17. The SLiMDisc server: short, linear motif discovery in proteins. Davey NE; Edwards RJ; Shields DC Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W455-9. PubMed ID: 17576682 [TBL] [Abstract][Full Text] [Related]
18. Automatic extraction of position specific cooccurrence of transcription factor bindings on promoters. Tsunoda T; Takagi T Pac Symp Biocomput; 1998; ():252-63. PubMed ID: 9697187 [TBL] [Abstract][Full Text] [Related]
19. CoSMoS: Conserved Sequence Motif Search in the proteome. Liu XI; Korde N; Jakob U; Leichert LI BMC Bioinformatics; 2006 Jan; 7():37. PubMed ID: 16433915 [TBL] [Abstract][Full Text] [Related]