These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 9390262)

  • 1. Statistical geometry analysis of proteins: implications for inverted structure prediction.
    Tropsha A; Singh RK; Vaisman II; Zheng W
    Pac Symp Biocomput; 1996; ():614-23. PubMed ID: 9390262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delaunay tessellation of proteins: four body nearest-neighbor propensities of amino acid residues.
    Singh RK; Tropsha A; Vaisman II
    J Comput Biol; 1996; 3(2):213-21. PubMed ID: 8811483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new approach to protein fold recognition based on Delaunay tessellation of protein structure.
    Zheng W; Cho SJ; Vaisman II; Tropsha A
    Pac Symp Biocomput; 1997; ():486-97. PubMed ID: 9390317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulations of protein folding. II. Application to protein A, ROP, and crambin.
    Kolinski A; Skolnick J
    Proteins; 1994 Apr; 18(4):353-66. PubMed ID: 8208727
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical significance of hierarchical multi-body potentials based on Delaunay tessellation and their application in sequence-structure alignment.
    Munson PJ; Singh RK
    Protein Sci; 1997 Jul; 6(7):1467-81. PubMed ID: 9232648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of protein structure by evaluation of sequence-structure fitness. Aligning sequences to contact profiles derived from three-dimensional structures.
    Ouzounis C; Sander C; Scharf M; Schneider R
    J Mol Biol; 1993 Aug; 232(3):805-25. PubMed ID: 8355272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recoverable one-dimensional encoding of three-dimensional protein structures.
    Kinjo AR; Nishikawa K
    Bioinformatics; 2005 May; 21(10):2167-70. PubMed ID: 15722374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo simulations of protein folding. I. Lattice model and interaction scheme.
    Kolinski A; Skolnick J
    Proteins; 1994 Apr; 18(4):338-52. PubMed ID: 8208726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of atomic four-body statistical potentials derived from the delaunay tessellation of protein structures.
    Masso M
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6321-4. PubMed ID: 23367374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein fold recognition by prediction-based threading.
    Rost B; Schneider R; Sander C
    J Mol Biol; 1997 Jul; 270(3):471-80. PubMed ID: 9237912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The folding thermodynamics and kinetics of crambin using an all-atom Monte Carlo simulation.
    Shimada J; Kussell EL; Shakhnovich EI
    J Mol Biol; 2001 Apr; 308(1):79-95. PubMed ID: 11302709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delaunay-based nonlocal interactions are sufficient and accurate in protein fold recognition.
    Mirzaie M; Sadeghi M
    Proteins; 2014 Mar; 82(3):415-23. PubMed ID: 24038726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein topology recognition from secondary structure sequences: application of the hidden Markov models to the alpha class proteins.
    Di Francesco V; Garnier J; Munson PJ
    J Mol Biol; 1997 Mar; 267(2):446-63. PubMed ID: 9096237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The native sequence determines sidechain packing in a protein, but does optimal sidechain packing determine the native sequence?
    Koehl P; Delarue M
    Pac Symp Biocomput; 1997; ():198-209. PubMed ID: 9390292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of 3D atomic similarities and their use in the discrimination of small molecule protein-binding sites.
    Najmanovich R; Kurbatova N; Thornton J
    Bioinformatics; 2008 Aug; 24(16):i105-11. PubMed ID: 18689810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional profiles for analysing protein sequence-structure relationships.
    Eisenberg D; Bowie JU; Lüthy R; Choe S
    Faraday Discuss; 1992; (93):25-34. PubMed ID: 1290936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A coarse-grained Langevin molecular dynamics approach to de novo protein structure prediction.
    Sasaki TN; Cetin H; Sasai M
    Biochem Biophys Res Commun; 2008 May; 369(2):500-6. PubMed ID: 18294960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of protein folding class from amino acid composition.
    Dubchak I; Holbrook SR; Kim SH
    Proteins; 1993 May; 16(1):79-91. PubMed ID: 8497486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential implications of availability of short amino acid sequences in proteins: an old and new approach to protein decoding and design.
    Otaki JM; Gotoh T; Yamamoto H
    Biotechnol Annu Rev; 2008; 14():109-41. PubMed ID: 18606361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.