These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
630 related articles for article (PubMed ID: 9390264)
1. Empirical free energy calculations of human immunodeficiency virus type 1 protease crystallographic complexes. II. Knowledge-based ligand-protein interaction potentials applied to thermodynamic analysis of hydrophobic mutations. Verkhivker GM Pac Symp Biocomput; 1996; ():638-52. PubMed ID: 9390264 [TBL] [Abstract][Full Text] [Related]
2. Empirical free energy calculations of ligand-protein crystallographic complexes. I. Knowledge-based ligand-protein interaction potentials applied to the prediction of human immunodeficiency virus 1 protease binding affinity. Verkhivker G; Appelt K; Freer ST; Villafranca JE Protein Eng; 1995 Jul; 8(7):677-91. PubMed ID: 8577696 [TBL] [Abstract][Full Text] [Related]
3. Molecular basis of resistance to HIV-1 protease inhibition: a plausible hypothesis. Luque I; Todd MJ; Gómez J; Semo N; Freire E Biochemistry; 1998 Apr; 37(17):5791-7. PubMed ID: 9558312 [TBL] [Abstract][Full Text] [Related]
4. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease. Sham YY; Chu ZT; Tao H; Warshel A Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821 [TBL] [Abstract][Full Text] [Related]
5. A structural and thermodynamic escape mechanism from a drug resistant mutation of the HIV-1 protease. Vega S; Kang LW; Velazquez-Campoy A; Kiso Y; Amzel LM; Freire E Proteins; 2004 May; 55(3):594-602. PubMed ID: 15103623 [TBL] [Abstract][Full Text] [Related]
6. Binding free energy contributions of interfacial waters in HIV-1 protease/inhibitor complexes. Lu Y; Yang CY; Wang S J Am Chem Soc; 2006 Sep; 128(36):11830-9. PubMed ID: 16953623 [TBL] [Abstract][Full Text] [Related]
7. Importance of polar solvation and configurational entropy for design of antiretroviral drugs targeting HIV-1 protease. Kar P; Lipowsky R; Knecht V J Phys Chem B; 2013 May; 117(19):5793-805. PubMed ID: 23614718 [TBL] [Abstract][Full Text] [Related]
8. Molecular dynamics study of the connection between flap closing and binding of fullerene-based inhibitors of the HIV-1 protease. Zhu Z; Schuster DI; Tuckerman ME Biochemistry; 2003 Feb; 42(5):1326-33. PubMed ID: 12564936 [TBL] [Abstract][Full Text] [Related]
9. Efficiency of a second-generation HIV-1 protease inhibitor studied by molecular dynamics and absolute binding free energy calculations. Lepsík M; Kríz Z; Havlas Z Proteins; 2004 Nov; 57(2):279-93. PubMed ID: 15340915 [TBL] [Abstract][Full Text] [Related]
10. Relation between sequence and structure of HIV-1 protease inhibitor complexes: a model system for the analysis of protein flexibility. Zoete V; Michielin O; Karplus M J Mol Biol; 2002 Jan; 315(1):21-52. PubMed ID: 11771964 [TBL] [Abstract][Full Text] [Related]
11. Structural role of the 30's loop in determining the ligand specificity of the human immunodeficiency virus protease. Swairjo MA; Towler EM; Debouck C; Abdel-Meguid SS Biochemistry; 1998 Aug; 37(31):10928-36. PubMed ID: 9692985 [TBL] [Abstract][Full Text] [Related]
12. Structural parameterization of the binding enthalpy of small ligands. Luque I; Freire E Proteins; 2002 Nov; 49(2):181-90. PubMed ID: 12210999 [TBL] [Abstract][Full Text] [Related]
13. Rapid and accurate prediction of binding free energies for saquinavir-bound HIV-1 proteases. Stoica I; Sadiq SK; Coveney PV J Am Chem Soc; 2008 Feb; 130(8):2639-48. PubMed ID: 18225901 [TBL] [Abstract][Full Text] [Related]
14. Molecular dynamics and free energy studies on the wild-type and mutated HIV-1 protease complexed with four approved drugs: mechanism of binding and drug resistance. Alcaro S; Artese A; Ceccherini-Silberstein F; Ortuso F; Perno CF; Sing T; Svicher V J Chem Inf Model; 2009 Jul; 49(7):1751-61. PubMed ID: 19537723 [TBL] [Abstract][Full Text] [Related]
15. Affinity and specificity of serine endopeptidase-protein inhibitor interactions. Empirical free energy calculations based on X-ray crystallographic structures. Krystek S; Stouch T; Novotny J J Mol Biol; 1993 Dec; 234(3):661-79. PubMed ID: 8254666 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamic mapping of the inhibitor site of the aspartic protease endothiapepsin. Gómez J; Freire E J Mol Biol; 1995 Sep; 252(3):337-50. PubMed ID: 7563055 [TBL] [Abstract][Full Text] [Related]
17. Computational titration analysis of a multiprotic HIV-1 protease-ligand complex. Spyrakis F; Fornabaio M; Cozzini P; Mozzarelli A; Abraham DJ; Kellogg GE J Am Chem Soc; 2004 Sep; 126(38):11764-5. PubMed ID: 15382890 [TBL] [Abstract][Full Text] [Related]
18. Absolute free energies of binding of peptide analogs to the HIV-1 protease from molecular dynamics simulations. Bartels C; Widmer A; Ehrhardt C J Comput Chem; 2005 Sep; 26(12):1294-305. PubMed ID: 15981257 [TBL] [Abstract][Full Text] [Related]
19. Prediction of the binding energy for small molecules, peptides and proteins. Schapira M; Totrov M; Abagyan R J Mol Recognit; 1999; 12(3):177-90. PubMed ID: 10398408 [TBL] [Abstract][Full Text] [Related]