BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 9390288)

  • 1. Specific modelling of regulatory units in DNA sequences.
    Frech K; Werner T
    Pac Symp Biocomput; 1997; ():151-62. PubMed ID: 9390288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel method to develop highly specific models for regulatory units detects a new LTR in GenBank which contains a functional promoter.
    Frech K; Danescu-Mayer J; Werner T
    J Mol Biol; 1997 Aug; 270(5):674-87. PubMed ID: 9245596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composition-sensitive analysis of the human genome for regulatory signals.
    Kel-Margoulis OV; Tchekmenev D; Kel AE; Goessling E; Hornischer K; Lewicki-Potapov B; Wingender E
    In Silico Biol; 2003; 3(1-2):145-71. PubMed ID: 12954097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GANN: genetic algorithm neural networks for the detection of conserved combinations of features in DNA.
    Beiko RG; Charlebois RL
    BMC Bioinformatics; 2005 Feb; 6():36. PubMed ID: 15725347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental analysis and computer prediction of CTF/NFI transcription factor DNA binding sites.
    Roulet E; Bucher P; Schneider R; Wingender E; Dusserre Y; Werner T; Mermod N
    J Mol Biol; 2000 Apr; 297(4):833-48. PubMed ID: 10736221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Pol II promoter sequences using transcription factor binding sites.
    Prestridge DS
    J Mol Biol; 1995 Jun; 249(5):923-32. PubMed ID: 7791218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer tool FUNSITE for analysis of eukaryotic regulatory genomic sequences.
    Kel AE; Kondrakhin YV; Kolpakov PhA ; Kel OV; Romashenko AG; Wingender E; Milanesi L; Kolchanov NA
    Proc Int Conf Intell Syst Mol Biol; 1995; 3():197-205. PubMed ID: 7584437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Some microsatellites may act as novel polymorphic cis-regulatory elements through transcription factor binding.
    Iglesias AR; Kindlund E; Tammi M; Wadelius C
    Gene; 2004 Oct; 341():149-65. PubMed ID: 15474298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cis-acting elements responsible for dopaminergic neuron-specific expression of zebrafish slc6a3 (dopamine transporter) in vivo are located remote from the transcriptional start site.
    Bai Q; Burton EA
    Neuroscience; 2009 Dec; 164(3):1138-51. PubMed ID: 19755139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Features of the structure and evolution of complex tandemly organized Bsp-repeats in the fox genome. II. Tissue-specific and recombinant BamHI-dimer sites].
    Potapov VA; Solov'ev VV; Romashchenko AG; Sosnovtsev SV; Ivanov SV
    Mol Biol (Mosk); 1991; 25(1):116-32. PubMed ID: 1716734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the infection-responsive bovine lactoferrin promoter.
    Zheng J; Ather JL; Sonstegard TS; Kerr DE
    Gene; 2005 Jun; 353(1):107-17. PubMed ID: 15935571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cluster analysis and promoter modelling as bioinformatics tools for the identification of target genes from expression array data.
    Werner T
    Pharmacogenomics; 2001 Feb; 2(1):25-36. PubMed ID: 11258194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer-assisted prediction, classification, and delimitation of protein binding sites in nucleic acids.
    Frech K; Herrmann G; Werner T
    Nucleic Acids Res; 1993 Apr; 21(7):1655-64. PubMed ID: 8479918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional regulation by competing transcription factor modules.
    Hermsen R; Tans S; ten Wolde PR
    PLoS Comput Biol; 2006 Dec; 2(12):e164. PubMed ID: 17140283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model of evolution with constant selective pressure for regulatory DNA sites.
    Enikeeva FN; Kotelnikova EA; Gelfand MS; Makeev VJ
    BMC Evol Biol; 2007 Jul; 7():125. PubMed ID: 17662135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A small automaton for word recognition in DNA sequences and its application to consensus analysis of regulatory elements in DNA regions controlling gene expression.
    Lefèvre C; Ikeda JE
    Proc Int Conf Intell Syst Mol Biol; 1993; 1():243-50. PubMed ID: 7584342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TRANSFAC database as a bridge between sequence data libraries and biological function.
    Wingender E; Karas H; Knüppel R
    Pac Symp Biocomput; 1997; ():477-85. PubMed ID: 9390316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specificity and robustness in transcription control networks.
    Sengupta AM; Djordjevic M; Shraiman BI
    Proc Natl Acad Sci U S A; 2002 Feb; 99(4):2072-7. PubMed ID: 11854503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of functional elements in unaligned nucleic acid sequences by a novel tuple search algorithm.
    Wolfertstetter F; Frech K; Herrmann G; Werner T
    Comput Appl Biosci; 1996 Feb; 12(1):71-80. PubMed ID: 8670622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional promoter modules can be detected by formal models independent of overall nucleotide sequence similarity.
    Klingenhoff A; Frech K; Quandt K; Werner T
    Bioinformatics; 1999 Mar; 15(3):180-6. PubMed ID: 10222404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.